Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
a) Ta có: \(\left(5\sqrt{\dfrac{1}{5}}+\dfrac{1}{2}\sqrt{20}-\dfrac{5}{4}\sqrt{\dfrac{4}{5}}+\sqrt{5}\right)\)
\(=\left(\sqrt{5}+\sqrt{5}-\dfrac{5}{4}\cdot\dfrac{2}{\sqrt{5}}+\sqrt{5}\right)\)
\(=3\sqrt{5}-\dfrac{1}{2}\sqrt{5}\)
\(=\dfrac{5}{2}\sqrt{5}\)
c) Ta có: \(\dfrac{5\sqrt{7}-7\sqrt{5}+2\sqrt{70}}{\sqrt{35}}\)
\(=\dfrac{\sqrt{35}\left(\sqrt{5}-\sqrt{7}+2\sqrt{2}\right)}{\sqrt{35}}\)
\(=2\sqrt{2}+\sqrt{5}-\sqrt{7}\)
Bài 2:
e) ĐKXĐ: \(\dfrac{4}{3}\le x\le6\)
Ta có: \(\sqrt{6-x}=3x-4\)
\(\Leftrightarrow6-x=\left(3x-4\right)^2\)
\(\Leftrightarrow9x^2-24x+16+6-x=0\)
\(\Leftrightarrow9x^2-25x+22=0\)
\(\Delta=\left(-25\right)^2-4\cdot9\cdot22=625-792< 0\)
Vậy: Phương trình vô nghiệm
a) \(E=2\sqrt{40\sqrt{12}}+3\sqrt{5\sqrt{48}}-2\sqrt{\sqrt{75}}-4\sqrt{15\sqrt{27}}.\)
\(=8\sqrt{5\sqrt{3}}+6\sqrt{5\sqrt{3}}-2\sqrt{5\sqrt{3}-12\sqrt{5\sqrt{3}}}\)
\(=0\)
b) \(F=\frac{1}{\sqrt{3}}+\frac{1}{3\sqrt{2}}+\frac{1}{\sqrt{3}}\sqrt{\frac{5}{12}-\frac{1}{\sqrt{6}}}.\)
Vì \(=\frac{5}{12}-\frac{1}{\sqrt{6}}=\frac{5-2\sqrt{6}}{12}=\frac{\left(\sqrt{3}-\sqrt{2}\right)^2}{12}\)
\(\frac{1}{\sqrt{3}}+\frac{1}{2\sqrt{3}}=\frac{\sqrt{3}}{3}+\frac{\sqrt{2}}{6}=\frac{2\sqrt{3}+\sqrt{2}}{6}\)
Nên \(F=\frac{2\sqrt{3}+\sqrt{2}}{6}+\frac{1}{\sqrt{3}}\sqrt{\frac{\left(\sqrt{3}-\sqrt{2}\right)^2}{12}}=\frac{2\sqrt{3}+\sqrt{2}+\sqrt{3}-\sqrt{2}}{6}=\frac{3\sqrt{3}}{6}=\frac{\sqrt{3}}{2}\)
\(A=-\dfrac{3+\sqrt{5}+3-\sqrt{5}}{\left(3-\sqrt{5}\right)\left(3+\sqrt{5}\right)}\cdot\dfrac{\sqrt{5}}{5}\\ A=\dfrac{-6}{4}\cdot\dfrac{\sqrt{5}}{5}=\dfrac{-3\sqrt{5}}{10}\)
a. \(\sqrt{48}-2\sqrt{32}-\sqrt{75}+3\sqrt{50}\) = \(4\sqrt{3}-2.4\sqrt{2}-5\sqrt{3}+3.5\sqrt{2}\)
= \(4\sqrt{3}-8\sqrt{2}-5\sqrt{3}+15\sqrt{2}\) = \(-\sqrt{3}+7\sqrt{2}\)
b. \(\sqrt{20}-15\sqrt{\dfrac{1}{5}}+\sqrt{\left(1-\sqrt{5}\right)^2}\) = \(2\sqrt{5}-3.5.\sqrt{\dfrac{1}{5}}+\left|1-\sqrt{5}\right|\)
= \(2\sqrt{5}-3\sqrt{25.\dfrac{1}{5}}+\sqrt{5}-1\) = \(2\sqrt{5}-3\sqrt{5}+\sqrt{5}-1\) = \(-1\)
c. \(\dfrac{3}{3+2\sqrt{3}}+\dfrac{3}{3-2\sqrt{3}}\) = \(\dfrac{3\left(3-2\sqrt{3}\right)+3\left(3+2\sqrt{3}\right)}{\left(3+2\sqrt{3}\right)\left(3-2\sqrt{3}\right)}\)
= \(\dfrac{9-6\sqrt{3}+9+6\sqrt{3}}{\left(3+2\sqrt{3}\right)\left(3-2\sqrt{3}\right)}\) = \(\dfrac{18}{9-12}=\dfrac{18}{-3}=-6\)
b: Ta có: \(\dfrac{1}{2+\sqrt{3}}+\dfrac{\sqrt{2}}{\sqrt{6}}-\dfrac{2}{3+\sqrt{3}}\)
\(=2-\sqrt{3}+\dfrac{1}{3}\sqrt{3}-1+\dfrac{1}{3}\sqrt{3}\)
\(=\dfrac{3-\sqrt{3}}{3}\)
1) Ta có: \(\dfrac{1}{2}\sqrt{48}-2\sqrt{75}-\dfrac{\sqrt{33}}{\sqrt{11}}+5\sqrt{1\dfrac{1}{3}}\)
\(=\dfrac{1}{2}\cdot4\sqrt{3}-2\cdot5\sqrt{3}-\sqrt{3}+5\cdot\sqrt{\dfrac{4}{3}}\)
\(=2\sqrt{3}-10\sqrt{3}-\sqrt{3}+\dfrac{10}{\sqrt{3}}\)
\(=\dfrac{-27+10}{\sqrt{3}}\)
\(=\dfrac{-17\sqrt{3}}{3}\)
b) Ta có: \(\dfrac{\sqrt{2}-1}{\sqrt{2}+2}-\dfrac{1}{\sqrt{2}+1}+\dfrac{\sqrt{2}+1}{\sqrt{2}}\)
\(=\dfrac{\sqrt{2}-1-\sqrt{2}+3+2\sqrt{2}}{\sqrt{2}\left(\sqrt{2}+1\right)}\)
\(=\dfrac{2+2\sqrt{2}}{2+2\sqrt{2}}=1\)
b: Ta có: \(\dfrac{4}{\sqrt{3}+1}+\dfrac{2}{\sqrt{3}-1}-\dfrac{6}{3-\sqrt{3}}\)
\(=2\sqrt{3}-2+\sqrt{3}+1-3-\sqrt{3}\)
\(=2\sqrt{3}-4\)
\(a,=\dfrac{\left(\sqrt{5}-2\sqrt{3}\right)\left(\sqrt{5}-\sqrt{3}\right)-\left(2\sqrt{5}+\sqrt{3}\right)\left(\sqrt{5}+\sqrt{3}\right)}{\left(\sqrt{5}-\sqrt{3}\right)\left(\sqrt{5}+\sqrt{3}\right)}\\ =\dfrac{11-3\sqrt{15}-13-3\sqrt{15}}{2}=\dfrac{-2-6\sqrt{15}}{2}=-1-3\sqrt{15}\)
\(b,=x\sqrt{2\left(x+1\right)}+\sqrt{\dfrac{2\left(x+1\right)^2}{x+1}}-\sqrt{\dfrac{16\left(x+1\right)}{2}}\\ =x\sqrt{2\left(x+1\right)}+\sqrt{2\left(x+1\right)}-2\sqrt{2\left(x+1\right)}\\ =\sqrt{2\left(x+1\right)}\left(x+1-2\right)=\left(x-1\right)\sqrt{2\left(x+1\right)}\)
a.\(=\dfrac{\left(\sqrt{5}-2\sqrt{3}\right)\left(\sqrt{5}-\sqrt{3}\right)}{\left(\sqrt{5}+\sqrt{3}\right)\left(\sqrt{5}-\sqrt{3}\right)}-\dfrac{\left(2\sqrt{5}+\sqrt{3}\right)\left(\sqrt{5}+\sqrt{3}\right)}{\left(\sqrt{5}-\sqrt{3}\right)\left(\sqrt{5}+\sqrt{3}\right)}\)
\(=\dfrac{5-\sqrt{15}-2\sqrt{15}+6}{5-3}-\dfrac{10+2\sqrt{15}+\sqrt{15}+3}{5-3}\)
=\(\dfrac{11-3\sqrt{15}-13-3\sqrt{15}}{2}=\dfrac{-2-6\sqrt{15}}{2}\)
=\(-1-3\sqrt{15}\)
b.=\(x\sqrt{2\left(x+1\right)}+\left(x+1\right)\sqrt{\dfrac{2\left(x+1\right)}{\left(x+1\right)^2}}-4\sqrt{\dfrac{2\left(x+1\right)}{2^2}}\)
=\(x\sqrt{2\left(x+1\right)}+\sqrt{2\left(x+1\right)}-2\sqrt{2\left(x+1\right)}\)
=\(\sqrt{2\left(x+1\right)}\left(x+1-2\right)\)
=\(\left(x-1\right)\sqrt{2\left(x+1\right)}\)
`(5sqrt{1/5}+1/2sqrt{20}-5/4sqrt{4/5}+sqrt{5}):2/5
`=(sqrt5+1/2*2sqrt5-sqrt{5/4}+sqrt5):2/5`
`=(sqrt5+sqrt5+sqrt5-sqrt5/2):2/5`
`=(5/2*sqrt5):2/5`
`=25/4sqrt5`
`1/3sqrt{48}+3sqrt{75}-sqrt{27}-10sqrt{1 1/3}`
`=1/3*4sqrt3+3*5sqrt3-3sqrt3-10sqrt{4/3}`
`=4/sqrt3+15sqrt3-3sqrt3-20/sqrt3`
`=12sqrt3-16/sqrt3`