b=x(1-x)^2)/1+x^2 / [(1-x^2/1-x + x)(1+x^2/1+x - x)] a) rút ngọn b. b) cmb>0 với mọi x>0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=x^2-6x+10\)
\(=x^2-6x+9+1\)
\(=\left(x-3\right)^2+1\)
\(\left(x-3\right)^2\ge0\)
\(\Rightarrow\left(x-3\right)^2+1\ge1>0\)
Vậy A > 0 với mọi x.
\(B=x^2-2xy+y^2+1\)
\(=\left(x-y\right)^2+1\)
\(\left(x-y\right)^2\ge0\)
\(\Rightarrow\left(x-y\right)^2+1\ge1>0\)
Vậy B > 0 với mọi x, y.
\(M=x^2-6x+12\)
\(=x^2-6x+9+3\)
\(=\left(x-3\right)^2+3\)
\(\left(x-3\right)^2\ge0\)
\(\Rightarrow\left(x-3\right)^2+3\ge3\)
\(MinB=3\Leftrightarrow x=3\)
\(\left(x+3\right)^2+\left(x-2\right)\left(x+2\right)-2\left(x-1\right)^2=7\)
\(x^2+6x+9+x^2-4-2\left(x^2-2x+1\right)=7\)
\(2x^2+6x+5-2x^2+4x-2=7\)
\(10x=7+3\)
\(10x=10\)
\(x=1\)
\(x^2+x=0\)
\(x\left(x+1\right)=0\)
\(\left[\begin{array}{nghiempt}x=0\\x+1=0\end{array}\right.\)
\(\left[\begin{array}{nghiempt}x=0\\x=-1\end{array}\right.\)
\(x^3-\frac{1}{4}x=0\)
\(x\left(x^2-\frac{1}{4}\right)=0\)
\(x\left(x-\frac{1}{2}\right)\left(x+\frac{1}{2}\right)=0\)
\(\left[\begin{array}{nghiempt}x=0\\x-\frac{1}{2}=0\\x+\frac{1}{2}=0\end{array}\right.\)
\(\left[\begin{array}{nghiempt}x=0\\x=\frac{1}{2}\\x=-\frac{1}{2}\end{array}\right.\)
\(\left(x+10\right)^2-\left(x^2+2x\right)\)
\(=x^2+20x+100-x^2-2x\)
\(=18x+100\)
\(\left(x+2\right)\left(x-2\right)+\left(x-1\right)\left(x^2+x+1\right)-x\left(x^2+x\right)\)
\(=x^2-4+x^3-1-x^3-x^2\)
\(=-5\)
b) Ta có: \(4x^2+x-5=0\)
\(\Leftrightarrow4x^2-4x+5x-5=0\)
\(\Leftrightarrow4x\left(x-1\right)+5\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(4x+5\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\4x+5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\4x=-5\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\left(nhận\right)\\x=-\dfrac{5}{4}\left(loại\right)\end{matrix}\right.\)
Thay x=1 vào biểu thức \(B=\dfrac{\sqrt{x}-1}{\sqrt{x}}\), ta được:
\(B=\dfrac{\sqrt{1}-1}{\sqrt{1}}=0\)
Vậy: Khi \(4x^2+x-5=0\) thì B=0
Bạn gõ đề ở khung \(\Sigma\) cho đề rõ hơn nhé !
a: \(B=\dfrac{x\left(1-x\right)^2}{1+x^2}:\left[\left(\dfrac{1-x^2}{1-x}+x\right)\left(\dfrac{1+x^2}{1+x}-x\right)\right]\)
\(=\dfrac{x\left(x-1\right)^2}{x^2+1}:\left[\dfrac{1-x^2+x-x^2}{1-x}\cdot\dfrac{1+x^2-x-x^2}{1+x}\right]\)
\(=\dfrac{x\left(x-1\right)^2}{x^2+1}\cdot\dfrac{\left(1-x\right)\left(1+x\right)}{\left(-2x^2+x+1\right)\left(-x+1\right)}\)
\(=\dfrac{x\left(x-1\right)^2}{x^2+1}\cdot\dfrac{\left(x-1\right)\left(x+1\right)}{-\left(x-1\right)\left(2x^2-x-1\right)}\)
\(=\dfrac{-x\left(x-1\right)^2}{x^2+1}\cdot\dfrac{x+1}{2x^2-2x+x-1}\)
\(=\dfrac{-x\left(x-1\right)^2}{x^2+1}\cdot\dfrac{x+1}{\left(x-1\right)\left(2x+1\right)}\)
\(=\dfrac{-x\left(x-1\right)\left(x+1\right)}{\left(2x+1\right)\left(x^2+1\right)}\)
b: Đề này sai rồi bạn ,lỡ x=2 thì nó nhỏ hơn 0 á bạn