Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ ĐKXĐ : \(\left\{{}\begin{matrix}x-1\ne0\\x+1\ne0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x\ne1\\x\ne-1\end{matrix}\right.\)
Vậy..
b/ Ta có :
\(C=\left(\frac{2x+1}{x-1}+\frac{8}{x^2-1}-\frac{x-1}{x+1}\right).\frac{x^2-1}{5}\)
\(=\left(\frac{2x+1}{x-1}+\frac{8}{\left(x-1\right)\left(x+1\right)}-\frac{x-1}{x+1}\right).\frac{\left(x-1\right)\left(x+1\right)}{5}\)
\(=\left(\frac{\left(2x+1\right)\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}+\frac{8}{\left(x-1\right)\left(x+1\right)}-\frac{\left(x-1\right)^2}{\left(x+1\right)\left(x-1\right)}\right).\frac{\left(x-1\right)\left(x+1\right)}{5}\)
\(=\frac{2x^2+2x+x+1+8-x^2+2x-1}{\left(x-1\right)\left(x+1\right)}.\frac{\left(x-1\right)\left(x+1\right)}{5}\)
\(=\frac{x^2+5x+8}{\left(x-1\right)\left(x+1\right)}.\frac{\left(x-1\right)\left(x+1\right)}{5}\)
\(=\frac{\left(x+\frac{5}{2}\right)^2+\frac{7}{4}}{5}\)
Vậy...
c/ Với mọi x ta có :
\(\left\{{}\begin{matrix}\left(x+\frac{5}{2}\right)^2+\frac{7}{4}>0\\5>0\end{matrix}\right.\)
\(\Leftrightarrow\frac{\left(x+\frac{5}{2}\right)^2+\frac{7}{4}}{5}>0\)
\(\Leftrightarrow C>0\left(đpcm\right)\)
a, ĐKXĐ: \(\hept{\begin{cases}x^3+1\ne0\\x^9+x^7-3x^2-3\ne0\\x^2+1\ne0\end{cases}}\)
b, \(Q=\left[\left(x^4-x+\frac{x-3}{x^3+1}\right).\frac{\left(x^3-2x^2+2x-1\right)\left(x+1\right)}{x^9+x^7-3x^2-3}+1-\frac{2\left(x+6\right)}{x^2+1}\right]\)
\(Q=\left[\frac{\left(x^3+1\right)\left(x^4-x\right)+x-3}{\left(x+1\right)\left(x^2-x+1\right)}.\frac{\left(x-1\right)\left(x+1\right)\left(x^2-x+1\right)}{\left(x^7-3\right)\left(x^2+1\right)}+1-\frac{2\left(x+6\right)}{x^2+1}\right]\)
\(Q=\left[\left(x^7-3\right).\frac{\left(x-1\right)}{\left(x^7-3\right)\left(x^2+1\right)}+1-\frac{2\left(x+6\right)}{x^2+1}\right]\)
\(Q=\frac{x-1+x^2+1-2x-12}{x^2+1}\)
\(Q=\frac{\left(x-4\right)\left(x+3\right)}{x^2+1}\)