Vẽ hình và chứng minh tính chất đường phân giác trong và ngoài của tam giác.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
BM,BN là phân giác của hai góc kề bù
=>góc MBN=90 độ
CM,CN là phân giác của haigóc kề bù
=>góc MCN=90 độ
Vì góc MBN+góc MCN=180 độ
nên MBNC nội tiếp
a. Vì BQ và BP là p/g ngoài và trong của \(\widehat{ABC}\) nên \(BP\bot BQ\)
Lại có \(AQ\bot BQ, AP\bot BP\) nên AQPB là hcn
Cmtt ta được AMCN cũng là hcn
b. Gọi I là giao 2 đường chéo AB và PQ của hcn AQBP
\(\Rightarrow IB=IA=IC\\ \Rightarrow\widehat{IPB}=\widehat{IBP}=\widehat{PBC}\left(BP\text{ là p/g}\right)\)
Mà 2 góc này ở vị trí slt nên IP//BC
\(\Rightarrow P,Q\) nằm trên đtb của \(\Delta ABC\)
Tương tự M,N cũng nằm trên đtb \(\Delta ABC\)
Vậy M,N,Q,P thẳng hàng
Tham khảo:
Đường phân giác ngoài tại một đỉnh của một tam giác là đường thẳng chia cạnh đối diện thàng hai đoạn thẳng tỉ lệ với hai cạnh kề với hai đoạn thẳng ấy. Ví dụ: Trong tam giác ABC, có AD là phân giác ngoài của góc A và AD cắt BC tại D. Như vậy, ta có: DB/DC = AB/AC.
HT
TL:
Tham khảo: Đường phân giác ngoài tại một đỉnh của một tam giác là đường thẳng chia cạnh đối diện thàng hai đoạn thẳng tỉ lệ với hai cạnh kề với hai đoạn thẳng ấy. Ví dụ: Trong tam giác ABC, có AD là phân giác ngoài của góc A và AD cắt BC tại D. Như vậy, ta có: DB/DC = AB/AC.
k cho mik nhé
@@@@@@@@@@@@@@@@@@@@@@@
HT
Tự Vẽ Hình Nhé :
Theo tính chất đường phân giác ngoài của một góc luôn vuông góc với đường phân giác ngoài của góc đó
=> \(\widehat{MBN}=\widehat{MCN}=90^0\)nên hai góc \(\widehat{MBN}\)và \(\widehat{MCN}\)cùng nhìn MN dưới một góc bằng 90 độ. vậy Tứ giác MBNC nội tiếp đường tròn đường kính MN
mk ko có bít làm sao jờ ?
?????????????????
Cho tam giác ABC có các đường phân giác trong là BE và CF cắt nhau tại M và các đường phân giác ngoài của các góc B và góc C cắt nhau tại N. Chứng minh tứ giác BMNC là tứ giác nội tiếp
Vẽ hình ra luôn
- mk ko bít
- ????
- tự làm nhé ^_^ !