Giải pt
x^2-4=2(x-2)(x+3)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
a) Ta có: \(\Delta=\left(2m-1\right)^2-4\cdot m\cdot\left(m+2\right)\)
\(\Leftrightarrow\Delta=4m^2-4m+1-4m^2-8m\)
\(\Leftrightarrow\Delta=-12m+1\)
Để phương trình có nghiệm kép thì \(\Delta=0\)
\(\Leftrightarrow-12m+1=0\)
\(\Leftrightarrow-12m=-1\)
hay \(m=\dfrac{1}{12}\)
b) Ta có: \(\Delta=\left(4m+3\right)^2-4\cdot2\cdot\left(2m^2-1\right)\)
\(\Leftrightarrow\Delta=16m^2+24m+9-16m^2+8\)
\(\Leftrightarrow\Delta=24m+17\)
Để phương trình có nghiệm kép thì \(\Delta=0\)
\(\Leftrightarrow24m+17=0\)
\(\Leftrightarrow24m=-17\)
hay \(m=-\dfrac{17}{24}\)
ĐKXĐ: \(x,y\ne0\)\(\left\{{}\begin{matrix}x+y+\dfrac{1}{x}+\dfrac{1}{y}=4\\x^3+y^3+\dfrac{1}{x^3}+\dfrac{1}{y^3}=4\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x+\dfrac{1}{x}+y+\dfrac{1}{y}=4\\\left(x+\dfrac{1}{x}\right)^3+\left(y+\dfrac{1}{y}\right)^3-3\left(x+\dfrac{1}{x}\right)-3\left(y+\dfrac{1}{y}\right)=4\end{matrix}\right.\)
Đặt \(x+\dfrac{1}{x}=a;y+\dfrac{1}{y}=b\left(a,b\ne0\right)\)
\(\Rightarrow hpt\) trở thành:
\(\left\{{}\begin{matrix}a+b=4\left(1\right)\\a^3+b^3-3a-3b=4\left(2\right)\end{matrix}\right.\)
Từ (1) \(\Rightarrow a=4-b\) Thay vào (2) ta được:
\(\left(4-b\right)^3+b^3-3\left(4-b\right)-3b=4\Leftrightarrow64-48b+12b^2-b^3+b^3-12+3b-3b-4=0\Leftrightarrow12b^2-48b+60=0\Leftrightarrow b^2-4b+5=0\Leftrightarrow b^2-4b+4+1=0\Leftrightarrow\left(b-2\right)^2+1=0\) Vô lí \(\Rightarrow\) ko có a,b \(\Rightarrow\) ko có x,y
Vậy hpt vô nghiệm
\(\left\{{}\begin{matrix}x+y=500\\\dfrac{8}{10}x+\dfrac{9}{10}y=420\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=500-y\\\dfrac{8}{10}\left(500-y\right)+\dfrac{9}{10}y=420\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=500-y\\400+\dfrac{y}{10}=420\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=500-y=300\\y=200\end{matrix}\right.\)
Vậy (x,y)=(300,200)
hpt <=> \(\left\{{}\begin{matrix}\dfrac{8}{10}x+\dfrac{8}{10}y=400\\\dfrac{8}{10}x+\dfrac{9}{10}y=420\end{matrix}\right.\)
<=>\(\left\{{}\begin{matrix}x+y=500\\\dfrac{1}{10}y=20\end{matrix}\right.\)
<=> \(\left\{{}\begin{matrix}x+y=500\\y=200\end{matrix}\right.\)
<=>\(\left\{{}\begin{matrix}x=300\\y=200\end{matrix}\right.\)
Bài 3:
b: \(\Leftrightarrow x^2\left(x+1\right)^2=0\)
hay \(x\in\left\{0;-1\right\}\)
c: \(\Leftrightarrow\left(x-1\right)\left(x^2+x+1\right)=0\)
=>x-1=0
hay x=1
d: \(\Leftrightarrow6x^2-3x-4x+2=0\)
\(\Leftrightarrow\left(2x-1\right)\left(3x-2\right)=0\)
hay \(x\in\left\{\dfrac{1}{2};\dfrac{2}{3}\right\}\)
Bài 1: ĐKXĐ: $2\leq x\leq 4$
PT $\Leftrightarrow (\sqrt{x-2}+\sqrt{4-x})^2=2$
$\Leftrightarrow 2+2\sqrt{(x-2)(4-x)}=2$
$\Leftrightarrow (x-2)(4-x)=0$
$\Leftrightarrow x-2=0$ hoặc $4-x=0$
$\Leftrightarrow x=2$ hoặc $x=4$ (tm)
Bài 2:
PT $\Leftrightarrow 4x^3(x-1)-3x^2(x-1)+6x(x-1)-4(x-1)=0$
$\Leftrightarrow (x-1)(4x^3-3x^2+6x-4)=0$
$\Leftrightarrow x=1$ hoặc $4x^3-3x^2+6x-4=0$
Với $4x^3-3x^2+6x-4=0(*)$
Đặt $x=t+\frac{1}{4}$ thì pt $(*)$ trở thành:
$4t^3+\frac{21}{4}t-\frac{21}{8}=0$
Đặt $t=m-\frac{7}{16m}$ thì pt trở thành:
$4m^3-\frac{343}{1024m^3}-\frac{21}{8}=0$
$\Leftrightarrow 4096m^6-2688m^3-343=0$
Coi đây là pt bậc 2 ẩn $m^3$ và giải ta thu được \(m=\frac{\sqrt[3]{49}}{4}\) hoặc \(m=\frac{-\sqrt[3]{7}}{4}\)
Khi đó ta thu được \(x=\frac{1}{4}(1-\sqrt[3]{7}+\sqrt[3]{49})\)
a: =>(x^2+x)^2-2(x^2+x)+(x^2+x)-2=0
=>(x^2+x-2)(x^2+x+1)=0
=>(x+2)(x-1)=0
=>x=-2 hoặc x=1
b: ĐKXĐ: x<>4; x<>1
PT =>\(\dfrac{x+3+3x-12}{x-4}=\dfrac{6}{1-x}\)
=>(4x-9)(1-x)=6(x-4)
=>4x-4x^2-9+9x=6x-24
=>-4x^2+13x-9-6x+24=0
=>-4x^2+7x+15=0
=>x=3(nhận) hoặc x=-5/4(nhận)
\(x^2-4=2\left(x-2\right)\left(x+3\right)\)
\(\Leftrightarrow x^2-4=2\left(x^2+3x-2x-6\right)\)
\(\Leftrightarrow x^2-4=2x^2+2x-12\)
\(\Leftrightarrow x^2-2x^2-2x=-12+4\)
\(\Leftrightarrow-x^2-2x=-8\)
\(\Leftrightarrow-x^2-2x+8=0\)
\(\Leftrightarrow-x^2+2x-4x+8=0\)
\(\Leftrightarrow-x\left(x-2\right)-4\left(x-2\right)=0\)
\(\Leftrightarrow\left(-x-4\right)\left(x-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}-x-4=0\\x-2=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=-4\\x=2\end{matrix}\right.\)
Vậy \(S=\left\{-4;2\right\}\)
\(x^2-4=2\left(x-2\right)\left(x+3\right)\)
\(\Leftrightarrow\left(x+2\right)\left(x-2\right)=2\left(x-2\right)\left(x+3\right)\)
\(\Leftrightarrow\left(x+2\right)\left(x-2\right)-2\left(x-2\right)\left(x+3\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left[\left(x+2\right)-2\left(x+3\right)\right]=0\)
\(\Leftrightarrow\left(x-2\right)\left(x+2-2x-6\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(-x-4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-4\end{matrix}\right.\)