K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 5 2017

đề sai r,,,,,,cái kia phải là x^2-x+1 chứ

nếu đúng như tôi thì bạn chỉ cần cho cái 2 vào trong căn rồi nhân liên hợp là ok

27 tháng 5 2017

yes..thanks

25 tháng 6 2017

\(\sqrt{25x^2+80x+64}+\sqrt{9x^2-6x+1}=\sqrt{4x^2+36x+81}\)

\(pt\Leftrightarrow\sqrt{\left(5x+8\right)^2}+\sqrt{\left(3x-1\right)^2}=\sqrt{\left(2x+9\right)^2}\)

\(\Leftrightarrow\left|5x+8\right|+\left|3x-1\right|=\left|2x+9\right|\)

Áp dụng BĐT \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\) ta có:

\(VT=\left|5x+8\right|+\left|-\left(3x-1\right)\right|\)

\(=\left|5x+8\right|+\left|-3x+1\right|\)

\(\ge\left|5x+8-3x+1\right|=\left|2x+9\right|=VP\)

Đẳng thức xảy ra khi \(-\frac{8}{5}\le x\le\frac{1}{3}\)

P.s:thực ra thì áp dụng căn a+căn b>= căn a+b ngay từ đầu luôn cx dc tùy

14 tháng 12 2018

DDK : \(x\ge1\)

\(\sqrt{x-1}-\sqrt{5x-1}=\sqrt{3x-2}\)

\(\Leftrightarrow\sqrt{x-1}=\sqrt{3x-2}+\sqrt{5x-1}\)

\(\Rightarrow x-1=3x-2+5x-2+2\sqrt{\left(3x-2\right)\left(5x-1\right)}\)

\(\Leftrightarrow x-1-3x+2-5x+2=2\sqrt{15x^2-3x-10x+2}\)

\(\Leftrightarrow3-7x=2\sqrt{15x^2-13x+2}\)

\(\Rightarrow9-42x+49x^2=4\left(15x^2-13x+2\right)\)

\(\Leftrightarrow9-42x+49x^2=60x^2-52x+8\)

\(\Leftrightarrow11x^2-10x-1=0\)

\(\Leftrightarrow11x^2-11x+x-1=0\)

\(\Leftrightarrow\left(11x+1\right)\left(x-1\right)=0\)

Giải nốt nha .

19 tháng 8 2017

c.

  1. Tập xác định của phương trình

  2. 2

    Lời giải bằng phương pháp phân tích thành nhân tử

  3. 3

    Sử dụng phép biến đổi sau

  4. 4

    Giải phương trình

  5. 5

    Đơn giản biểu thức

  6. 6

    Giải phương trình

  7. 7

    Đơn giản biểu thức

  8. 8

    Giải phương trình

  9. 9

    Giải phương trình

  10. 10

    Đơn giản biểu thức

  11. 11

    Giải phương trình

  12. 12

    Đơn giản biểu thức

  13. 13

    Lời giải thu được

19 tháng 8 2017

a,

  1. Tập xác định của phương trình

  2. 2

    Lời giải bằng phương pháp phân tích thành nhân tử

  3. 3

    Sử dụng phép biến đổi sau

  4. 4

    Giải phương trình

  5. 5

    Đơn giản biểu thức

  6. 6

    Giải phương trình

  7. 7

    Đơn giản biểu thức

  8. 8

    Giải phương trình

  9. 9

    Đơn giản biểu thức

  10. 10

    Lời giải thu được

NV
20 tháng 11 2018

\(\sqrt{1+2005^2+\dfrac{2005^2}{2006^2}}=\dfrac{1}{2006}\sqrt{2006^2+2005^2+\left(2005.2006\right)^2}\)

\(=\dfrac{1}{2006}\sqrt{\left(2006-2005\right)^2+2.2005.2006+\left(2005.2006\right)^2}\)

\(=\dfrac{1}{2006}\sqrt{1+2.2005.2006+\left(2005.2006\right)^2}\)

\(=\dfrac{1}{2006}\sqrt{\left(2005.2006+1\right)^2}=\dfrac{2005.2006+1}{2006}=2005+\dfrac{1}{2006}\)

Phương trình tương đương:

\(\sqrt{\left(x-1\right)^2}+\sqrt{\left(x-2\right)^2}=2005+\dfrac{1}{2006}+\dfrac{2005}{2006}\)

\(\Leftrightarrow\left|x-1\right|+\left|x-2\right|=2006\)

TH1: \(x\ge2\): \(x-1+x-2=2006\Rightarrow2x=2009\Rightarrow x=\dfrac{2009}{2}\)

TH2: \(x\le1\) : \(1-x+2-x=2006\Rightarrow-2x=2003\Rightarrow x=\dfrac{-2003}{2}\)

TH3: \(1< x< 2:\) \(x-1+2-x=2006\Rightarrow3=2006\) (vô nghiệm)

Vậy \(\left[{}\begin{matrix}x=\dfrac{2009}{2}\\x=\dfrac{-2003}{2}\end{matrix}\right.\)

3 tháng 11 2019

ĐK:\(x\ge3\)

PT \(\Leftrightarrow\frac{-6x}{\sqrt{x-3}+\sqrt{7x-3}}=\sqrt{5x-2}\)(nhân liên hợp)

Đến đây ta có VT < 0 với mọi \(x\ge3\) mà VP > 0. Vậy pt vô nghiệm.

29 tháng 7 2017

gõ lại đề