tính giá trị biểu thức:B=(1-1/2).(1-1/3).(1-1/4)...(1-1/2021).(1-1/2022)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(B=\dfrac{1}{2}\cdot\dfrac{2}{3}\cdot...\cdot\dfrac{2020}{2021}\cdot\dfrac{2021}{2022}=\dfrac{1}{2022}\)
\(B=\left(1-\dfrac{1}{2}\right)\cdot\left(1-\dfrac{1}{3}\right)\cdot\left(1-\dfrac{1}{4}\right)\cdot\cdot\cdot\left(1-\dfrac{1}{2021}\right)\cdot\left(1-\dfrac{1}{2022}\right)\)
\(B=\left(\dfrac{2}{2}-\dfrac{1}{2}\right)\cdot\left(\dfrac{3}{3}-\dfrac{1}{3}\right)\cdot\left(\dfrac{4}{4}-\dfrac{1}{4}\right)\cdot\cdot\cdot\left(\dfrac{2021}{2021}-\dfrac{1}{2021}\right)\cdot\left(\dfrac{2022}{2022}-\dfrac{1}{2022}\right)\)
\(B=\dfrac{1}{2}\cdot\dfrac{2}{3}\cdot\dfrac{3}{4}\cdot\cdot\cdot\dfrac{2020}{2021}\cdot\dfrac{2021}{2022}\)
\(B=\dfrac{1\cdot2\cdot3\cdot\cdot\cdot2020\cdot2021}{2\cdot3\cdot4\cdot\cdot\cdot2021\cdot2022}\)
\(B=\dfrac{1}{2022}\)
=(1-2-3+4)+(5-6-7+8)+...+(2017-2018-2019+2020)+2021-2022-2023
=0+0+...+0-1-2023
=-2024
Đặt biểu thức trên là A
TC
√1 + 1/1^2 + 1/2^2 = 1 + 1 - 1/2
Tương tự
√1 + 1/2^2 + 1/3^2 = 1 + 1/2 - 1/3
√1 + 1/2021^2 + 2022^2 = 1 + 1/2021 - 1/2022
=> A = (1 + 1 + 1/3 +...+ 1/2021) - (1/2 + 1/3 +....+ 1/2022)
=> A = 1 + 1 - 1/2022 = 4043/2022
đúng không bạn
a: =2+6*(-1)^2019+2026
=2028-6
=2022
b: \(=\dfrac{4}{3}\cdot\dfrac{9}{8}\cdot\dfrac{16}{15}...\cdot\dfrac{625}{624}\)
\(=\dfrac{2^2}{\left(2-1\right)\left(2+1\right)}\cdot\dfrac{3^2}{\left(3-1\right)\left(3+1\right)}\cdot\dfrac{4^2}{\left(4-1\right)\left(4+1\right)}...\cdot\dfrac{625}{\left(25-1\right)\left(25+1\right)}\)
\(=\dfrac{2\cdot3\cdot4\cdot...\cdot49}{1\cdot2\cdot3\cdot...\cdot48}\cdot\dfrac{2\cdot3\cdot4\cdot...\cdot49}{3\cdot4\cdot5\cdot...\cdot50}\)
\(=\dfrac{49}{1}\cdot\dfrac{2}{50}=\dfrac{98}{50}=\dfrac{49}{25}\)
3S=3-3^2+...-3^2022+3^2023
=>4S=3^2023+1
=>4S-3^2023=1
A=(1-2)+(3-4)+...+(2021-2022)+2023
=2023-(1+1+1+...+1)
=2023-1011
=1012
Ta có \(B=\left(1-\dfrac{1}{2}\right)\left(1-\dfrac{1}{3}\right)\left(1-\dfrac{1}{4}\right)...\left(1-\dfrac{1}{2021}\right)\left(1-\dfrac{1}{2022}\right)\)
\(B=\dfrac{1}{2}.\dfrac{2}{3}.\dfrac{3}{4}...\dfrac{2020}{2021}.\dfrac{2021}{2022}\)
\(B=\dfrac{1}{2022}\)
giúp mik với ạ