K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 6 2023

Ta có \(B=\left(1-\dfrac{1}{2}\right)\left(1-\dfrac{1}{3}\right)\left(1-\dfrac{1}{4}\right)...\left(1-\dfrac{1}{2021}\right)\left(1-\dfrac{1}{2022}\right)\)

\(B=\dfrac{1}{2}.\dfrac{2}{3}.\dfrac{3}{4}...\dfrac{2020}{2021}.\dfrac{2021}{2022}\)

\(B=\dfrac{1}{2022}\)

1 tháng 6 2023

giúp mik với ạ

 

\(B=\dfrac{1}{2}\cdot\dfrac{2}{3}\cdot...\cdot\dfrac{2020}{2021}\cdot\dfrac{2021}{2022}=\dfrac{1}{2022}\)

13 tháng 5 2022

\(B=\left(1-\dfrac{1}{2}\right)\cdot\left(1-\dfrac{1}{3}\right)\cdot\left(1-\dfrac{1}{4}\right)\cdot\cdot\cdot\left(1-\dfrac{1}{2021}\right)\cdot\left(1-\dfrac{1}{2022}\right)\)

\(B=\left(\dfrac{2}{2}-\dfrac{1}{2}\right)\cdot\left(\dfrac{3}{3}-\dfrac{1}{3}\right)\cdot\left(\dfrac{4}{4}-\dfrac{1}{4}\right)\cdot\cdot\cdot\left(\dfrac{2021}{2021}-\dfrac{1}{2021}\right)\cdot\left(\dfrac{2022}{2022}-\dfrac{1}{2022}\right)\)

\(B=\dfrac{1}{2}\cdot\dfrac{2}{3}\cdot\dfrac{3}{4}\cdot\cdot\cdot\dfrac{2020}{2021}\cdot\dfrac{2021}{2022}\)

\(B=\dfrac{1\cdot2\cdot3\cdot\cdot\cdot2020\cdot2021}{2\cdot3\cdot4\cdot\cdot\cdot2021\cdot2022}\)

\(B=\dfrac{1}{2022}\)

=(1-2-3+4)+(5-6-7+8)+...+(2017-2018-2019+2020)+2021-2022-2023

=0+0+...+0-1-2023

=-2024

31 tháng 1 2022

Cuối cùng trong năm 2021 thôi nhé.

31 tháng 1 2022

Đặt biểu thức trên là A

TC

√1 + 1/1^2 + 1/2^2 = 1 + 1 - 1/2

Tương tự

√1 + 1/2^2 + 1/3^2 = 1 + 1/2 -  1/3

√1 + 1/2021^2 + 2022^2 = 1 + 1/2021 -  1/2022

=> A = (1 + 1 + 1/3 +...+ 1/2021) - (1/2 + 1/3 +....+ 1/2022)

=> A = 1 + 1 - 1/2022 = 4043/2022

đúng không bạn

12 tháng 3 2022

-Mình làm tắt được không bạn :/?

12 tháng 3 2022

-Sợ bạn không hiểu thôi.

a: =2+6*(-1)^2019+2026

=2028-6

=2022

b: \(=\dfrac{4}{3}\cdot\dfrac{9}{8}\cdot\dfrac{16}{15}...\cdot\dfrac{625}{624}\)

\(=\dfrac{2^2}{\left(2-1\right)\left(2+1\right)}\cdot\dfrac{3^2}{\left(3-1\right)\left(3+1\right)}\cdot\dfrac{4^2}{\left(4-1\right)\left(4+1\right)}...\cdot\dfrac{625}{\left(25-1\right)\left(25+1\right)}\)

\(=\dfrac{2\cdot3\cdot4\cdot...\cdot49}{1\cdot2\cdot3\cdot...\cdot48}\cdot\dfrac{2\cdot3\cdot4\cdot...\cdot49}{3\cdot4\cdot5\cdot...\cdot50}\)

\(=\dfrac{49}{1}\cdot\dfrac{2}{50}=\dfrac{98}{50}=\dfrac{49}{25}\)

3S=3-3^2+...-3^2022+3^2023

=>4S=3^2023+1

=>4S-3^2023=1

A=(1-2)+(3-4)+...+(2021-2022)+2023

=2023-(1+1+1+...+1)

=2023-1011

=1012