K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 12 2021

S = \(\left(1+\dfrac{1}{3}+...+\dfrac{1}{2021}\right)-\left(\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{2020}\right)\)

\(\left(1+\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2021}\right)-2.\left(\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{2020}\right)\)

\(\left(1+\dfrac{1}{2}+\dfrac{1}{3}+...+\dfrac{1}{2021}\right)-\left(1+\dfrac{1}{2}+...+\dfrac{1}{1010}\right)\)

\(\dfrac{1}{1011}+\dfrac{1}{1012}+...+\dfrac{1}{2021}\)

@_@ đề bài yêu cầu gì? So sáng hay tính vậy 

25 tháng 1 2016

tui chả hiểu đề bài như nào cả

10 tháng 4 2017

\(S=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2012}+\frac{1}{2013}-2\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{2012}\right)\)

\(S=1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2012}+\frac{1}{2013}-1-\frac{1}{2}-\frac{1}{3}-...-\frac{1}{1006}\)

\(S=\frac{1}{1007}+\frac{1}{1008}+...+\frac{1}{2012}+\frac{1}{2013}=P\)

=>(S-P)2013=02013=0

10 tháng 4 2017

cảm ơn pạn nhak Tuấn Minh. Kết bạn nhak.

Giả sử tất cả các số đã cho đều lẻ

=>Quy đồng, ta được:

\(A=\dfrac{\left(a_2\cdot a_3\cdot...\cdot a_{2022}\right)+\left(a_1\cdot a_3\cdot...\cdot a_{2021}\cdot a_{2022}\right)+...+\left(a_1\cdot a_2\cdot...\cdot a_{2021}\right)}{a_1\cdot a_2\cdot...\cdot a_{2022}}=1\)

Tử có 2022 số hạng, mẫu là số lẻ

=>A là số chẵn khác 1

=>Trái GT

=>Phải có ít nhất 1 số là số chẵn

18 tháng 2 2016

Lên mạng xem quy tắc nhé

18 tháng 2 2016

Lên mạng xem nhé