Cho các số thực a,b không âm thoả mãn: a + b = \(\dfrac{1}{2}\). Tìm max và min của biểu thức: P = \(\dfrac{a}{1-a}+\dfrac{b}{1-b}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(T=\dfrac{a}{2-a}+\dfrac{b}{2-b}+\dfrac{c}{2-c}\)
- Với min: hãy chứng minh BĐT phụ sau: \(\dfrac{a}{2-a}\ge\dfrac{18a-1}{25}\)
(Lưu ý rằng a;b;c không âm nên nếu nhân cả tử và mẫu với a chẳng hạn để Cauchy-Schwarz thì sẽ dẫn tới khả năng mẫu số bằng 0 bài làm ko đủ chặt chẽ)
- Với max: chứng minh BĐT phụ sau: \(\dfrac{a}{2-a}\le a\)
1) Áp dụng bất đẳng thức AM - GM và bất đẳng thức Schwarz:
\(P=\dfrac{1}{a}+\dfrac{1}{\sqrt{ab}}\ge\dfrac{1}{a}+\dfrac{1}{\dfrac{a+b}{2}}\ge\dfrac{4}{a+\dfrac{a+b}{2}}=\dfrac{8}{3a+b}\ge8\).
Đẳng thức xảy ra khi a = b = \(\dfrac{1}{4}\).
2.
\(4=a^2+b^2\ge\dfrac{1}{2}\left(a+b\right)^2\Rightarrow a+b\le2\sqrt{2}\)
Đồng thời \(\left(a+b\right)^2\ge a^2+b^2\Rightarrow a+b\ge2\)
\(M\le\dfrac{\left(a+b\right)^2}{4\left(a+b+2\right)}=\dfrac{x^2}{4\left(x+2\right)}\) (với \(x=a+b\Rightarrow2\le x\le2\sqrt{2}\) )
\(M\le\dfrac{x^2}{4\left(x+2\right)}-\sqrt{2}+1+\sqrt{2}-1\)
\(M\le\dfrac{\left(2\sqrt{2}-x\right)\left(x+4-2\sqrt{2}\right)}{4\left(x+2\right)}+\sqrt{2}-1\le\sqrt{2}-1\)
Dấu "=" xảy ra khi \(x=2\sqrt{2}\) hay \(a=b=\sqrt{2}\)
3. Chia 2 vế giả thiết cho \(x^2y^2\)
\(\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{x^2}+\dfrac{1}{y^2}-\dfrac{1}{xy}\ge\dfrac{1}{4}\left(\dfrac{1}{x}+\dfrac{1}{y}\right)^2\)
\(\Rightarrow0\le\dfrac{1}{x}+\dfrac{1}{y}\le4\)
\(A=\left(\dfrac{1}{x}+\dfrac{1}{y}\right)\left(\dfrac{1}{x^2}+\dfrac{1}{y^2}-\dfrac{1}{xy}\right)=\left(\dfrac{1}{x}+\dfrac{1}{y}\right)^2\le16\)
Dấu "=" xảy ra khi \(x=y=\dfrac{1}{2}\)
\(a+b\ge a^2+b^2\ge\dfrac{1}{2}\left(a+b\right)^2\Rightarrow a+b\le2\)
\(\Rightarrow2\ge a+b\ge2\sqrt{ab}\Rightarrow ab\le1\)
Xét \(Q=\dfrac{a}{a+1}+\dfrac{b}{b+1}=\dfrac{a\left(b+1\right)+b\left(a+1\right)}{\left(a+1\right)\left(b+1\right)}=\dfrac{a+b+2ab}{\left(a+1\right)\left(b+1\right)}\)
\(Q=\dfrac{a+b+ab+ab}{\left(a+1\right)\left(b+1\right)}\le\dfrac{a+b+ab+1}{\left(a+1\right)\left(b+1\right)}=\dfrac{\left(a+1\right)\left(b+1\right)}{\left(a+1\right)\left(b+1\right)}=1\)
\(\Rightarrow P\le2020+1^{2021}=2021\)
Dấu "=" xảy ra khi \(a=b=1\)
\(P=\dfrac{a^2}{b^2}+\dfrac{b^2}{a^2}-\dfrac{2a}{b}-\dfrac{2b}{a}-1\)
*Tìm min:
\(P=\dfrac{a}{1-a}+\dfrac{b}{1-b}=\dfrac{1}{1-a}-1+\dfrac{1}{1-b}-1\)
\(\ge\dfrac{4}{\left(1-a\right)+\left(1-b\right)}-2\)
\(=\dfrac{4}{2-\dfrac{1}{2}}-2=\dfrac{2}{3}\)
Dấu "=" xảy ra khi \(a=b=\dfrac{1}{4}\). Do đó minP=2/3
*Tìm max: \(a,b\ge0\)
\(P=\dfrac{a}{1-a}+\dfrac{b}{1-b}=\dfrac{a-ab+b-ab}{\left(1-a\right)\left(1-b\right)}\)
\(=\dfrac{\dfrac{1}{2}-2ab}{1-\left(a+b\right)+ab}=\dfrac{\dfrac{1}{2}-2ab}{\dfrac{1}{2}+ab}=\dfrac{\dfrac{3}{2}-2\left(\dfrac{1}{2}+ab\right)}{\dfrac{1}{2}+ab}\)
\(=\dfrac{\dfrac{3}{2}}{\dfrac{1}{2}+ab}-2\le\dfrac{\dfrac{3}{2}}{\dfrac{1}{2}}-2=1\)
Dấu "=" xảy ra khi \(\left(a;b\right)=\left(0;\dfrac{1}{2}\right),\left(\dfrac{1}{2};0\right)\)
Vậy maxP=1