K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
16 tháng 1 2021

Chắc chắn đây không phải là 1 đề bài chính xác

16 tháng 1 2021

\(P=\dfrac{a^2}{b^2}+\dfrac{b^2}{a^2}-\dfrac{2a}{b}-\dfrac{2b}{a}-1\)

NV
17 tháng 1 2021

Dự đoán điểm rơi xảy ra tại \(\left(a;b;c\right)=\left(3;2;4\right)\)

Đơn giản là kiên nhẫn tính toán và tách biểu thức:

\(D=13\left(\dfrac{a}{18}+\dfrac{c}{24}\right)+13\left(\dfrac{b}{24}+\dfrac{c}{48}\right)+\left(\dfrac{a}{9}+\dfrac{b}{6}+\dfrac{2}{ab}\right)+\left(\dfrac{a}{18}+\dfrac{c}{24}+\dfrac{2}{ac}\right)+\left(\dfrac{b}{8}+\dfrac{c}{16}+\dfrac{2}{bc}\right)+\left(\dfrac{a}{9}+\dfrac{b}{6}+\dfrac{c}{12}+\dfrac{8}{abc}\right)\)

Sau đó Cô-si cho từng ngoặc là được

13 tháng 1 2022

Có cách nào làm ngắn hơn ko ạ

AH
Akai Haruma
Giáo viên
29 tháng 1 2021

Lời giải:

Áp dụng BĐT Bunhiacopxky:

\((a^2+\frac{1}{b^2})(1+4^2)\geq (a+\frac{4}{b})^2\Rightarrow \sqrt{a^2+\frac{1}{b^2}}\geq \frac{1}{\sqrt{17}}(a+\frac{4}{b})\)

Hoàn toàn tương tự với những cái còn lại và cộng theo vế suy ra:

$S\geq \frac{1}{\sqrt{17}}(a+b+c+\frac{4}{a}+\frac{4}{b}+\frac{4}{c})$

$\geq \frac{1}{\sqrt{17}}(a+b+c+\frac{36}{a+b+c})$ theo BĐT Cauchy-Schwarz.

Áp dụng BĐT AM-GM:

\(a+b+c+\frac{9}{4(a+b+c)}\geq 3\)

\(\frac{135}{4(a+b+c)}\geq \frac{135}{4.\frac{3}{2}}=\frac{45}{2}\)

\(\Rightarrow a+b+c+\frac{36}{a+b+c}\geq \frac{51}{2}\)

\(\Rightarrow S\geq \frac{3\sqrt{17}}{2}\)

Vậy $S_{\min}=\frac{3\sqrt{17}}{2}$

 

AH
Akai Haruma
Giáo viên
29 tháng 1 2021

Lời giải:

Áp dụng BĐT Bunhiacopxky:

\((a^2+\frac{1}{b^2})(1+4^2)\geq (a+\frac{4}{b})^2\Rightarrow \sqrt{a^2+\frac{1}{b^2}}\geq \frac{1}{\sqrt{17}}(a+\frac{4}{b})\)

Hoàn toàn tương tự với những cái còn lại và cộng theo vế suy ra:

$S\geq \frac{1}{\sqrt{17}}(a+b+c+\frac{4}{a}+\frac{4}{b}+\frac{4}{c})$

$\geq \frac{1}{\sqrt{17}}(a+b+c+\frac{36}{a+b+c})$ theo BĐT Cauchy-Schwarz.

Áp dụng BĐT AM-GM:

\(a+b+c+\frac{9}{4(a+b+c)}\geq 3\)

\(\frac{135}{4(a+b+c)}\geq \frac{135}{4.\frac{3}{2}}=\frac{45}{2}\)

\(\Rightarrow a+b+c+\frac{36}{a+b+c}\geq \frac{51}{2}\)

\(\Rightarrow S\geq \frac{3\sqrt{17}}{2}\)

Vậy $S_{\min}=\frac{3\sqrt{17}}{2}$

 

NV
8 tháng 2 2021

Đặt \(\left(\sqrt{a};\sqrt{b};\sqrt{c}\right)=\left(x;y;z\right)\Rightarrow x+y+z=1\)

BĐT trở thành: \(\dfrac{xy}{\sqrt{x^2+y^2+2z^2}}+\dfrac{yz}{\sqrt{y^2+z^2+2x^2}}+\dfrac{zx}{\sqrt{x^2+z^2+2y^2}}\le\dfrac{1}{2}\)

Ta có:

\(x^2+z^2+y^2+z^2\ge\dfrac{1}{2}\left(x+z\right)^2+\dfrac{1}{2}\left(y+z\right)^2\ge\left(x+z\right)\left(y+z\right)\)

\(\Rightarrow\dfrac{xy}{\sqrt{x^2+y^2+2z^2}}\le\dfrac{xy}{\sqrt{\left(x+z\right)\left(y+z\right)}}\le\dfrac{1}{2}\left(\dfrac{xy}{x+z}+\dfrac{xy}{y+z}\right)\)

Tương tự: \(\dfrac{yz}{\sqrt{y^2+z^2+2x^2}}\le\dfrac{1}{2}\left(\dfrac{yz}{x+y}+\dfrac{yz}{x+z}\right)\)

\(\dfrac{zx}{\sqrt{z^2+x^2+2y^2}}\le\dfrac{1}{2}\left(\dfrac{zx}{x+y}+\dfrac{zx}{y+z}\right)\)

Cộng vế với vế:

\(VT\le\dfrac{1}{2}\left(\dfrac{zx+yz}{x+y}+\dfrac{xy+zx}{y+z}+\dfrac{yz+xy}{z+x}\right)=\dfrac{1}{2}\left(x+y+z\right)=\dfrac{1}{2}\) (đpcm)

Dấu "=" xảy ra khi \(x=y=z\) hay \(a=b=c\)

2 tháng 1 2022

Áp dụng BĐT Minicopski, ta có:

\(P=\sqrt{a^2+\dfrac{1}{a^2}}+\sqrt{b^2+\dfrac{1}{b^2}}\ge\sqrt{\left(a+b\right)^2+\left(\dfrac{1}{a}+\dfrac{1}{b}\right)^2}\\ \Rightarrow P\ge\sqrt{4^2+\left(\dfrac{4}{a+b}\right)^2}=\sqrt{16+\left(\dfrac{4}{4}\right)^2}=\sqrt{17}\)

Đẳng thức xảy ra \(\Leftrightarrow a=b=2\)

2 tháng 1 2022

Áp dụng BĐT Cô si

⇒ P≥ \(\sqrt{2\sqrt{a^2.\dfrac{1}{a^2}}}+\sqrt{2\sqrt{b^2.\dfrac{1}{b^2}}}\)

\(=\sqrt{2}+\sqrt{2}\)

\(=2\sqrt{2}\)

2 tháng 1 2022

Ta có \(a^2+\dfrac{1}{b+c}=a^2+\dfrac{1}{6-a}\)

Mà \(a+b+c=6\Rightarrow0\le a,b,c\le2\)

\(\Rightarrow a^2+\dfrac{1}{6-a}\ge2^2+\dfrac{1}{6-2}=\dfrac{17}{4}\)

\(\Rightarrow P=\sum\sqrt{a^2+\dfrac{1}{b+c}}=\sum\sqrt{a^2+\dfrac{1}{6-a}}\ge\sqrt{\dfrac{17}{4}}+\sqrt{\dfrac{17}{4}}+\sqrt{\dfrac{17}{4}}=\dfrac{3\sqrt{17}}{2}\)

Dấu \("="\Leftrightarrow a=b=c=2\)

2 tháng 1 2022

a + b + c >= 6 chứ có phải a + b + c = 6 đâu ạ?

NV
8 tháng 4 2021

\(\left(a^3+b^2+c\right)\left(\dfrac{1}{a}+1+c\right)\ge\left(a+b+c\right)^2\)

\(\Rightarrow\dfrac{a^3+b^2+c}{a}\ge\dfrac{\left(a+b+c\right)^2}{1+a+ac}=\dfrac{9}{1+a+ac}\)

\(\Rightarrow\dfrac{a}{a^3+b^2+c}\le\dfrac{1+a+ac}{9}\)

Tương tự: \(\dfrac{b}{b^3+c^2+a}\le\dfrac{1+b+ab}{9}\)\(\dfrac{c}{c^3+a^2+b}\le\dfrac{1+c+bc}{9}\)

Cộng vế:

\(P\le\dfrac{3+a+b+c+ab+bc+ca}{9}\le\dfrac{6+\dfrac{1}{3}\left(a+b+c\right)^3}{9}=1\)

Dấu "=" xảy ra khi \(a=b=c=1\)

AH
Akai Haruma
Giáo viên
16 tháng 2 2021

Lời giải:Vì $f(x)\geq 0$ nên $\Delta=b^2-4ac\leq 0$

$\Leftrightarrow 4ac\geq b^2$

Áp dụng BĐT AM-GM:

$Q=\frac{4a+c}{b}\geq \frac{4\sqrt{ac}}{b}\geq \frac{4\sqrt{b^2}}{b}=\frac{4b}{b}=4$

Vậy $Q_{\min}=4$