K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
11 tháng 7 2021

Lời giải:
Áp dụng BĐT Cauchy-Schwarz:

$3=\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\geq \frac{9}{x+y+z}$
$\Rightarrow x+y+z\geq 3$

Áp dụng BĐT AM-GM:

$\frac{y^2}{2}+\frac{1}{2}\geq y$

$\frac{z^3}{3}+\frac{1}{3}+\frac{1}{3}\geq z$

$\Rightarrow P+\frac{7}{6}\geq x+y+z=3$

$\Rightarrow P\geq \frac{11}{6}$

Giá trị này đạt tại $x=y=z=1$

 

9 tháng 7 2021

\(P=\dfrac{1}{x^3+y^3}+\dfrac{1}{xy}=\dfrac{1}{x^3+3x^2y+3xy^2+y^3-3xy\left(x+y\right)}+\dfrac{3}{3xy}\)

\(=\dfrac{1}{\left(x+y\right)^3-3xy}+\dfrac{3}{3xy}\)\(=\dfrac{1}{1-3xy}+\dfrac{3}{3xy}\)

áp dụng BDT Cauchy Scharwarz

\(=>P\ge\)\(\dfrac{\left(1+\sqrt{3}\right)^2}{1-3xy+3xy}=4+2\sqrt{3}\)

 

9 tháng 7 2021

Bn ơi dấu "=" xảy ra khi nào vậy ạ

NV
25 tháng 1 2022

1.

Đặt \(x+y=a\Rightarrow y=a-x\)

\(\Rightarrow x^2+2x\left(a-x\right)-14\left(a-x\right)-10x+3\left(a-x\right)^2+27=0\)

\(\Leftrightarrow2x^2-4\left(a+1\right)x+3a^2-10a+27=0\)

\(\Delta'=4\left(a+1\right)^2-2\left(3a^2-10a+27\right)\ge0\)

\(\Leftrightarrow-a^2+14a-25\ge0\)

\(\Rightarrow7-2\sqrt{6}\le a\le7+2\sqrt{6}\)

\(\Rightarrow-10-2\sqrt{6}\le P\le-10+2\sqrt{6}\)

2. Chắc đề là \(a;b>0\) (đảm bảo mẫu dương) chứ ko phải \(a.b>4\)

\(M\ge\dfrac{\left(a+b\right)^2}{a+b-8}=\dfrac{\left(a+b-8+8\right)^2}{a+b-8}=\dfrac{\left(a+b-8\right)^2+16\left(a+b-8\right)+64}{a+b-8}\)

\(M\ge a+b-8+\dfrac{64}{a+b-8}+16\ge2\sqrt{\dfrac{64\left(a+b-8\right)}{a+b-8}}+16=32\)

Dấu "=" xảy ra khi \(a=b=8\)

25 tháng 1 2022

a;b > 4 không phải > 0

NV
2 tháng 9 2021

\(\sum\dfrac{x^2}{y^2+yz+z^2}\ge\sum\dfrac{x^2}{y^2+\dfrac{y^2+z^2}{2}+z^2}=\dfrac{2}{3}\sum\dfrac{x^2}{y^2+z^2}\ge\dfrac{2}{3}.\dfrac{3}{2}=1\) (BĐT cuối là BĐT Netsbitt)

Câu b là bài IMO 2001 USA, em có thể tìm thấy rất nhiều lời giải

13 tháng 12 2021

\(P=\sum\dfrac{1}{x+y+1}\ge\dfrac{9}{2\left(x+y+z\right)+3}=\dfrac{9}{2.1+3}=\dfrac{9}{5}\)

Dấu \("="\Leftrightarrow x=y=z=\dfrac{1}{3}\)

13 tháng 12 2021

Lm dùm mik bài dưới lun vs

11 tháng 7 2021

Đặt \(\sqrt{x}=a;\sqrt{y}=b;\sqrt{z}=c\Rightarrow a^3b^3+b^3c^3+c^3a^3=1\)

\(=\sum\dfrac{a^{12}}{a^6+b^6}=\sum\dfrac{a^6\left(a^6+b^6\right)}{a^6+b^6}-\sum\dfrac{a^6b^6}{a^6+b^6}\\ =\sum a^6-\sum\dfrac{a^6b^6}{a^6+b^6}\\ \overset{Cosi}{\ge}a^3b^3+b^3c^3+c^3a^2-\sum\dfrac{a^6b^6}{2a^3b^3}\\ =1-\dfrac{1}{2}\sum a^3b^3=1-\dfrac{1}{2}=\dfrac{1}{2}\)

Dấu = xảy ra khi \(x=y=z=\dfrac{1}{\sqrt[3]{3}}\)

11 tháng 7 2021

dòng 3 từ dưới lên là c^3a^3 nhé, mình gõ lỗi xíu

 

Với a,b,c dưog thì \(\dfrac{x^2}{a}+\dfrac{y^2}{b}+\dfrac{z^2}{c}>=\dfrac{\left(x+y+z\right)^2}{a+b+c}\)

\(P>=\dfrac{\left(x+y+z\right)^2}{xy+yz+xz+\sqrt{1+x^3}+\sqrt{1+y^3}+\sqrt{1+z^3}}\)

\(\sqrt{1+x^3}=\sqrt{\left(1+x\right)\left(1-x+x^2\right)}< =\dfrac{2+x^2}{2}\)

Dấu = xảy ra khi x=2

=>\(P>=\dfrac{\left(x+y+z\right)^2}{2\left(xy+yz+xz\right)+x^2+y^2+z^2+6}=\dfrac{2\left(x+y+z\right)^2}{\left(x+y+z\right)^2+6}\)

Đặt t=(x+y+z)^2(t>=36)

=>P>=2t/t-6

Xét hàm số \(f\left(t\right)=\dfrac{t}{t+6}\left(t>=36\right)\)

\(f'\left(t\right)=\dfrac{6}{\left(t+6\right)^2}>=0,\forall t>=36\)

=>f(t) đồng biến

=>f(t)>=f(36)=6/7

=>P>=12/7

Dấu = xảy ra khi x=y=z=2

AH
Akai Haruma
Giáo viên
11 tháng 7 2021

Lời giải:

Áp dụng BĐT AM-GM:
$\frac{x^3}{y(x+z)}+\frac{y}{2}+\frac{x+z}{4}\geq \frac{3}{2}x$

Tương tự với các phân thức còn lại, cộng theo vế và rút gọn ta được:

$\Rightarrow P=\sum \frac{x^3}{y(x+z)}\geq \frac{x+y+z}{2}$

Tiếp tục áp dụng AM-GM:

$x+y\geq 2\sqrt{xy}$

$y+z\geq 2\sqrt{yz}$

$x+z\geq 2\sqrt{xz}$

$\Rightarrow x+y+z\geq \sqrt{xy}+\sqrt{yz}+\sqrt{xz}=1$

$\Rightarrow P\geq \frac{1}{2}$

Vậy $P_{\min}=\frac{1}{2}$ khi $x=y=z=\frac{1}{3}$

 

NV
11 tháng 7 2021

\(\dfrac{x^3}{y\left(x+z\right)}+\dfrac{y}{2}+\dfrac{x+z}{4}\ge\dfrac{3x}{2}\)

Tương tự và cộng lại:

\(P+x+y+z\ge\dfrac{3}{2}\left(x+y+z\right)\)

\(\Rightarrow P\ge\dfrac{1}{2}\left(x+y+z\right)\ge\dfrac{1}{2}\left(\sqrt{xy}+\sqrt{yz}+\sqrt{zx}\right)=\dfrac{1}{2}\)