Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(P=\sum\dfrac{1}{x+y+1}\ge\dfrac{9}{2\left(x+y+z\right)+3}=\dfrac{9}{2.1+3}=\dfrac{9}{5}\)
Dấu \("="\Leftrightarrow x=y=z=\dfrac{1}{3}\)
1) Áp dụng bất đẳng thức AM - GM và bất đẳng thức Schwarz:
\(P=\dfrac{1}{a}+\dfrac{1}{\sqrt{ab}}\ge\dfrac{1}{a}+\dfrac{1}{\dfrac{a+b}{2}}\ge\dfrac{4}{a+\dfrac{a+b}{2}}=\dfrac{8}{3a+b}\ge8\).
Đẳng thức xảy ra khi a = b = \(\dfrac{1}{4}\).
2.
\(4=a^2+b^2\ge\dfrac{1}{2}\left(a+b\right)^2\Rightarrow a+b\le2\sqrt{2}\)
Đồng thời \(\left(a+b\right)^2\ge a^2+b^2\Rightarrow a+b\ge2\)
\(M\le\dfrac{\left(a+b\right)^2}{4\left(a+b+2\right)}=\dfrac{x^2}{4\left(x+2\right)}\) (với \(x=a+b\Rightarrow2\le x\le2\sqrt{2}\) )
\(M\le\dfrac{x^2}{4\left(x+2\right)}-\sqrt{2}+1+\sqrt{2}-1\)
\(M\le\dfrac{\left(2\sqrt{2}-x\right)\left(x+4-2\sqrt{2}\right)}{4\left(x+2\right)}+\sqrt{2}-1\le\sqrt{2}-1\)
Dấu "=" xảy ra khi \(x=2\sqrt{2}\) hay \(a=b=\sqrt{2}\)
3. Chia 2 vế giả thiết cho \(x^2y^2\)
\(\dfrac{1}{x}+\dfrac{1}{y}=\dfrac{1}{x^2}+\dfrac{1}{y^2}-\dfrac{1}{xy}\ge\dfrac{1}{4}\left(\dfrac{1}{x}+\dfrac{1}{y}\right)^2\)
\(\Rightarrow0\le\dfrac{1}{x}+\dfrac{1}{y}\le4\)
\(A=\left(\dfrac{1}{x}+\dfrac{1}{y}\right)\left(\dfrac{1}{x^2}+\dfrac{1}{y^2}-\dfrac{1}{xy}\right)=\left(\dfrac{1}{x}+\dfrac{1}{y}\right)^2\le16\)
Dấu "=" xảy ra khi \(x=y=\dfrac{1}{2}\)
Câu 1:
a, Giả sử \(A=\dfrac{a^2}{b^2}+\dfrac{b^2}{a^2}-\dfrac{a}{b}-\dfrac{b}{a}\ge0\)
\(\Leftrightarrow A=\dfrac{a^2}{b^2}+\dfrac{b^2}{a^2}-2\left(\dfrac{a}{b}+\dfrac{b}{a}\right)+\left(\dfrac{a}{b}+\dfrac{b}{a}\right)\ge0\)
Mà \(\dfrac{a}{b}+\dfrac{b}{a}\ge2\Leftrightarrow A\ge\dfrac{a^2}{b^2}+\dfrac{b^2}{a^2}-2\cdot\dfrac{a}{b}-2\cdot\dfrac{b}{a}+2\ge0\)
\(\Leftrightarrow\left(\dfrac{a^2}{b^2}-2\cdot\dfrac{a}{b}+1\right)+\left(\dfrac{b^2}{a^2}-2\cdot\dfrac{b}{a}+1\right)\ge0\\ \Leftrightarrow\left(\dfrac{a}{b}-1\right)^2+\left(\dfrac{b}{a}-1\right)^2\ge0\left(\text{luôn đúng}\right)\)
Dấu \("="\Leftrightarrow a=b\)
b, \(B=\dfrac{a^4}{b^4}+\dfrac{b^4}{a^4}-2\left(\dfrac{a^2}{b^2}+\dfrac{b^2}{a^2}\right)+2+\left(\dfrac{a^2}{b^2}+2+\dfrac{b^2}{a^2}\right)+\left(\dfrac{a}{b}+\dfrac{b}{a}\right)-4\)
\(B=\left(\dfrac{a^4}{b^4}-2\cdot\dfrac{a^2}{b^2}+1\right)+\left(\dfrac{b^4}{a^4}-2\cdot\dfrac{b^2}{a^2}+1\right)+\left(\dfrac{a}{b}+\dfrac{b}{a}\right)^2+\left(\dfrac{a}{b}+\dfrac{b}{a}\right)-2\\ \Leftrightarrow B=\left(\dfrac{a^2}{b^2}-1\right)^2+\left(\dfrac{b^2}{a^2}-1\right)^2+\left(\dfrac{a}{b}+\dfrac{b}{a}\right)^2+\dfrac{a}{b}+\dfrac{b}{a}-4\\ \Leftrightarrow B\ge0+0+0+\dfrac{a^2+b^2}{ab}-4\ge\dfrac{2ab}{ab}-4=2-4=-2\)
Dấu \("="\Leftrightarrow\left(a;b\right)\in\left\{\left(1;-1\right);\left(-1;1\right)\right\}\)
Câu 2:
\(\left(x^2+y^2\right)\left(3^2+4^2\right)\ge\left(3x+4y\right)^2=M^2\\ \Leftrightarrow M^2\le25\cdot25\\ \Leftrightarrow M\le25\)
Dấu \("="\Leftrightarrow\dfrac{x}{3}=\dfrac{y}{4}\Leftrightarrow\dfrac{x^2}{9}=\dfrac{y^2}{16}=\dfrac{x^2+y^2}{9+16}=\dfrac{25}{25}=1\Leftrightarrow\left\{{}\begin{matrix}x^2=9\\y^2=16\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=4\end{matrix}\right.\)
Vậy \(M_{max}=25\Leftrightarrow\left(x;y\right)=\left(3;4\right)\)
Ta có: \(\left(x-1\right)^2+\left(x+y\right)^2\le9\Rightarrow x+y\le3\).
Áp dụng bất đẳng thức AM - GM ta có:
\(\dfrac{2}{x}+2x\ge2\sqrt{\dfrac{2}{x}.2x}=4;\dfrac{4}{y}+y\ge2\sqrt{\dfrac{4}{y}.y}=4\).
Do đó \(\dfrac{2}{x}\ge4-2x;\dfrac{4}{y}\ge4-y\)
\(\Rightarrow P\ge8-4\left(x+y\right)\ge-4\). (do \(x+y\le3\)).
Vậy...
Đẳng thức xảy ra khi và chỉ khi x = 1; y = 2.
a: \(=\dfrac{\sqrt{m}\left(m+4n-4\sqrt{mn}\right)}{\sqrt{mn}\left(\sqrt{m}-2\sqrt{n}\right)}\)
\(=\dfrac{1}{\sqrt{n}}\cdot\left(\sqrt{m}-2\sqrt{n}\right)\)
b: \(=\dfrac{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(=\dfrac{x+\sqrt{x}+1}{\sqrt{x}+1}\)
c: \(=\sqrt{5^2\cdot2\cdot x^2y^4\cdot xy}-\dfrac{2y^2}{x^2}\cdot4\sqrt{2}\cdot x^3\sqrt{xy}+\dfrac{3}{2}xy\cdot\sqrt{2}\cdot y\cdot\sqrt{xy}\)
\(=5xy^2\sqrt{2xy}-8\sqrt{2xy}xy^2+\dfrac{3}{2}xy^2\cdot\sqrt{2xy}\)
\(=-\dfrac{3}{2}\sqrt{2xy}\)
d: \(=\left(x+2\right)\cdot\dfrac{\sqrt{2x-3}}{\sqrt{x+2}}=\sqrt{\left(2x-3\right)\left(x+2\right)}\)
1.
Đặt \(x+y=a\Rightarrow y=a-x\)
\(\Rightarrow x^2+2x\left(a-x\right)-14\left(a-x\right)-10x+3\left(a-x\right)^2+27=0\)
\(\Leftrightarrow2x^2-4\left(a+1\right)x+3a^2-10a+27=0\)
\(\Delta'=4\left(a+1\right)^2-2\left(3a^2-10a+27\right)\ge0\)
\(\Leftrightarrow-a^2+14a-25\ge0\)
\(\Rightarrow7-2\sqrt{6}\le a\le7+2\sqrt{6}\)
\(\Rightarrow-10-2\sqrt{6}\le P\le-10+2\sqrt{6}\)
2. Chắc đề là \(a;b>0\) (đảm bảo mẫu dương) chứ ko phải \(a.b>4\)
\(M\ge\dfrac{\left(a+b\right)^2}{a+b-8}=\dfrac{\left(a+b-8+8\right)^2}{a+b-8}=\dfrac{\left(a+b-8\right)^2+16\left(a+b-8\right)+64}{a+b-8}\)
\(M\ge a+b-8+\dfrac{64}{a+b-8}+16\ge2\sqrt{\dfrac{64\left(a+b-8\right)}{a+b-8}}+16=32\)
Dấu "=" xảy ra khi \(a=b=8\)
a;b > 4 không phải > 0