Cho A = 1/10 + 1/15 + 1/21 +....+ 1/120 Tìm x sao cho A :x = 759
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{x}{2008}-\frac{1}{10}-\frac{1}{15}-\frac{1}{21}-...-\frac{1}{120}=\frac{5}{8}\)
\(\Rightarrow\frac{x}{2008}-[2\left(\frac{1}{20}+\frac{1}{30}+\frac{1}{42}+...+\frac{1}{240}\right)]=\frac{5}{8}\)
\(\Rightarrow\frac{x}{2008}-[2\left(\frac{1}{4.5}+\frac{1}{5.6}+\frac{1}{6.7}+...+\frac{1}{15.16}\right)]=\frac{5}{8}\)
\(\Rightarrow\frac{x}{2008}-[2\left(\frac{1}{4}-\frac{1}{5}+\frac{1}{5}-\frac{1}{6}+\frac{1}{6}-\frac{1}{7}+...+\frac{1}{5}-\frac{1}{16}\right)]=\frac{5}{8}\)
\(\Rightarrow\frac{x}{2008}-[2.\frac{3}{16}]=\frac{5}{8}\)
\(\Rightarrow\frac{x}{2008}=1\)
\(\Rightarrow x=2008\)
\(\frac{7}{x}+\frac{4}{5.9}+\frac{4}{9.13}+\frac{4}{13.17}+...+\frac{4}{41.45}=\frac{29}{45}\)
\(\Rightarrow\frac{7}{x}+\left(\frac{4}{5.9}+\frac{4}{9.13}+\frac{4}{13.17}+...+\frac{4}{41.45}\right)=\frac{29}{45}\)
\(\Rightarrow\frac{7}{x}+\left(\frac{1}{5}-\frac{1}{9}+\frac{1}{9}-\frac{1}{13}+...+\frac{1}{41}-\frac{1}{45}\right)=\frac{29}{45}\)
\(\Rightarrow\frac{7}{x}+\left(\frac{1}{5}-\frac{1}{45}\right)=\frac{29}{45}\)
\(\Rightarrow\frac{7}{x}+\frac{8}{45}=\frac{29}{45}\)
\(\Rightarrow\frac{7}{x}=\frac{21}{45}\)
\(\Rightarrow x=15\)
\(\frac{x}{2008}-\left(\frac{1}{10}+\frac{1}{15}+\frac{1}{21}+...+\frac{1}{120}\right)=\frac{5}{8}\)
\(\frac{x}{2008}-\frac{3}{8}=\frac{5}{8}\)
\(\frac{x}{2008}=1\)
x=2008
a . 13-|x+5|=14
\(\Rightarrow Ix+5I=-1\)
\(\Rightarrow x\in\varnothing\)
b.27-3 | x-2|=15
\(3Ix-2I=12\)
\(|x-2|=4\)
\(\Rightarrow\orbr{\begin{cases}x-2=4\\x-2=-4\end{cases}\Leftrightarrow\orbr{\begin{cases}x=6\\x=-2\end{cases}}}\)
c 10+|x-15|=3
\(Ix-15I=-7\)
\(\Rightarrow x\in\varnothing\)
2 Tìm số nguyên a sao cho
a -32 (a+21)=0
\(a+21=0\)
\(a=-21\)
b (a+1) (a-2)=0
\(\Rightarrow\orbr{\begin{cases}a+1=0\\a+2=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-1\\a=-2\end{cases}}}\)
c 15+a^2=24
\(a^2=9\)
\(a=\pm3\)
học tốt
bạn gửi câu trả lời của bạn trước nhé rồi mình sẽ gửi câu trả lời cho
\(A=\dfrac{1}{10}+\dfrac{1}{15}+\dfrac{1}{21}+...+\dfrac{1}{120}\)
\(=2\left(\dfrac{1}{20}+\dfrac{1}{30}+\dfrac{1}{42}+...+\dfrac{1}{240}\right)\)
\(=2\left(\dfrac{1}{4.5}+\dfrac{1}{5.6}+\dfrac{1}{6.7}+...+\dfrac{1}{15.16}\right)\)
\(=2\left(\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{7}+...+\dfrac{1}{15}-\dfrac{1}{16}\right)\)
\(=2\left(\dfrac{1}{4}-\dfrac{1}{16}\right)\)
\(=2\cdot\dfrac{3}{16}\)
\(=\dfrac{3}{8}\)
\(A:x=759\)
\(\dfrac{3}{8}:x=759\)
\(\Rightarrow x=\dfrac{3}{8}:759=\dfrac{1}{2024}\)
#AvoidMe
A=2(1/20+1/30+...+1/240)
=2(1/4-1/5+1/5-1/6+...+1/15-1/16)
=2*3/16=3/8
A:x=759
=>x=3/8:759=1/2024