3) Cho vật sáng AB hình mũi tên cao 3cm vuông góc với trục chính của một thấu kính phân kì có tiêu cự 16cm. Điểm A nằm trên trục chính và cách thấu kính 8cm.
a) Háy dựng ảnh A*B* của AB qua thấu kính.
b) Dựa vào hình vẽ và phép chứng minh hình học. tính khoảng cách từ ảnh đến thấu kính và chiều cao của ảnh?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Mình chỉ làm phần tính toán thôi nha, còn phần vẽ thì chắc bạn cũng biết vẽ rồi
Bài Giải
a. Dựng ảnh A'B' của vật qua thấu kính ta thấy:
f < d < 2f nên ảnh A'B' là ảnh thật, ngược chiều với vật AB
b.Áp dụng công thức độ phóng đại của ảnh ta có:
\(\dfrac{AB}{A'B'}=\dfrac{d}{d'}=\dfrac{12}{24}=\dfrac{1}{2}\)
=> A'B' = 2AB =4 (cm)
Áp dụng công thức thấu kính ta có:
\(\dfrac{1}{f}\) = \(\dfrac{1}{d}+\dfrac{1}{d'}\)
=> d' = \(\dfrac{d.f}{d-f}\) = \(\dfrac{12.8}{12-8}\) = 24 (cm)
Khoảng cách từ ảnh đến thấu kính:
\(\dfrac{1}{f}=\dfrac{1}{d'}-\dfrac{1}{d}\Rightarrow\dfrac{1}{16}=\dfrac{1}{d'}-\dfrac{1}{12}\)
\(\Rightarrow d'=6,9\left(cm\right)\)
Chiều cao của ảnh:
Ta có: \(\dfrac{d}{d'}=\dfrac{h}{h'}\Rightarrow\dfrac{12}{6,9}=\dfrac{3}{h'}\)
\(\Rightarrow h'=1,725\left(cm\right)\)
Ảnh thật, ngược chiều và lớn hơn vật.
Khoảng cách từ ảnh đến thấu kính:
\(\dfrac{1}{f}=\dfrac{1}{d}+\dfrac{1}{d'}\Rightarrow\dfrac{1}{20}=\dfrac{1}{30}+\dfrac{1}{d'}\Rightarrow d'=60cm\)
Chiều cao ảnh:
\(\dfrac{h}{h'}=\dfrac{d}{d'}\Rightarrow\dfrac{5}{h'}=\dfrac{30}{60}\Rightarrow h'=10cm\)
a, Ảnh ảo nhỏ hơn vật
b, Có CF//BC
\(\Rightarrow\dfrac{FO}{BK}=\dfrac{OB'}{BB'}=\dfrac{8}{12}=\dfrac{2}{3}\\ \Rightarrow\dfrac{OB'}{OB}=\dfrac{2}{3}\\ do.A'B'//AB\\ \Rightarrow\dfrac{AB'}{AB}=\dfrac{OB}{OB}=\dfrac{3}{4}=\dfrac{OA'}{OA}\\ \Rightarrow A'B'=...;OA'=....\)
a) Bạn tự vẽ hình.
b) Hình minh họa :
Xét \(\Delta FA'B'\sim\Delta FOI\) có : \(\dfrac{A'B'}{OI}=\dfrac{A'F}{OF}\Leftrightarrow\dfrac{A'B'}{AB}=\dfrac{OF-OA'}{OF}\)
\(\Rightarrow\dfrac{h'}{3}=\dfrac{15-d'}{15}\left(1\right)\)
Xét \(\Delta OA'B'\sim\Delta OAB\) có : \(\dfrac{A'B'}{AB}=\dfrac{OB'}{OB}\Leftrightarrow\dfrac{h'}{3}=\dfrac{d'}{30}\left(2\right)\).
Từ (1) và (2), ta có hệ phương trình : \(\left\{{}\begin{matrix}\dfrac{h'}{3}=\dfrac{15-d'}{15}\\\dfrac{h'}{3}=\dfrac{d'}{30}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}d'=10\left(cm\right)\\h'=1\left(cm\right)\end{matrix}\right.\).
Vậy : Ảnh A'B' cách thấu kính \(d'=10\left(cm\right)\) và cao \(h'=1\left(cm\right)\).
ΔOAB∞ΔOA'B'
⇒\(\dfrac{AB}{A'B'}=\dfrac{OA}{OA'}\Rightarrow\dfrac{1}{A'B'}=\dfrac{24}{OA'}\) 1
ΔOFI∞ΔFA'B'
\(\dfrac{OI}{A'B'}=\dfrac{OF'}{F'A'}\Rightarrow\dfrac{AB}{A'B'}=\dfrac{OF}{OF-OA}\)
⇔\(\dfrac{1}{A'B'}=\dfrac{12}{12-OA'}\) 2
Từ 1 và 2 ⇒ \(\dfrac{1}{OA'}=\dfrac{12}{12-OA'}\)
⇔1(12-OA') = 12. OA'
⇔12-12.OA' = 12.OA'
⇔-12.OA' - 12. OA' = -12
⇔-24.OA' = -3
⇔OA' = 0.125
Thay OA'= 0.125 vào 1
⇒\(\dfrac{1}{A'B'}=\dfrac{24}{-0.125}\Rightarrow\dfrac{1.0,125}{24}=\dfrac{1}{192}\)
b) ảnh A'B' là ảnh ảo ngược chiều và nhỏ hơn vật
c) ΔOAB∞ΔOA'B'
⇒\(\dfrac{AB}{A'B'}=\dfrac{OA}{OA'}\Rightarrow\dfrac{1}{A'B'}=\dfrac{5}{OA'}\) 1
ΔOFI∞ΔFA'B'
\(\dfrac{OI}{A'B'}=\dfrac{OF'}{F'A'}\Rightarrow\dfrac{AB}{A'B'}\dfrac{OF}{OF-OA}\)
\(\Leftrightarrow\dfrac{1}{A'B'}=\dfrac{3}{3-OA'}\) 2
Từ 1 và 2 ⇒ \(\dfrac{1}{OA'}=\dfrac{3}{3-OA'}\)
⇔1(3-OA') = 3. OA'
⇔3- 3.OA' = 3.OA'
⇔-3.OA' -3. OA' = -3
⇔-6.OA' = -3
⇔OA' = -9
Thay OA'= -9 vào 1
⇒\(\dfrac{1}{A'B'}=\dfrac{5}{-9}\Rightarrow A'B'=\dfrac{1.\left(-9\right)}{5}=-1.8\)