Cho △ABC Vuông tại A lấy điểm E trên cạch BC sao cho BE=BA .Đường thẳng vuông góc với BC tại E cát AC tại I
a)Chứng minh △ABI=△EBI
b)Gọi F là giao điểm của BA và EI.Chứng minh △iFC cân
c)CHứng Minh rằng BI⊥CF
d)Gọi D là trung điểm của AC và H là giao điểm của AE với BI .Kẻ CH cắt ED tại G .Tìm x biết EG=3x -4 và GD=x
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: AB<AC
=>góc C<góc B
b: Xét ΔBAM vuông tại A và ΔBEM vuông tại E có
BM chung
BA=BE
=>ΔBAM=ΔBEM
c: Xét ΔBNC có
NE,CA là đường cao
NE cắt CA tại M
=>M là trực tâm
=>BM vuông góc CN
a: Xét ΔBAE vuông tại A và ΔBDE vuông tại D có
BE chung
BA=BD
=>ΔBAE=ΔBDE
=>ED=EA
mà EA<EF
nên ED<EF
b: Xét ΔEAF vuông tại A và ΔEDC vuông tại D có
EA=ED
góc AEF=góc DEC
=>ΔEAF=ΔEDC
=>EF=EC
=>ΔEFC cân tại E
c: BA+AF=BF
BD+DC=BC
mà BA=BD và AF=DC
nên BF=BC
=>ΔBFC cân tại B
mà BM là trung tuyến
nên BM là phân giác của góc FBC
=>B,E,M thẳng hàng
4:
a: Xet ΔAMB và ΔAMC có
AM chung
MB=MC
AB=AC
=>ΔAMB=ΔAMC
b: Xet ΔAEM vuông tại E và ΔAFM vuông tại F có
AM chung
góc EAM=góc FAM
=>ΔAEM=ΔAFM
=>AE=AF
c: AE=AF
ME=MF
=>AM là trung trực của EF
mà K nằm trên trung trực của EF
nên A,M,K thẳng hàng
Tham khảo tại link này nhé !
https://olm.vn/hoi-dap/detail/219404925266.html
a)Xét\(\Delta ABE\)và\(\Delta DBE\)có:
\(AB=DB\left(GT\right)\)
\(\widehat{BAE}=\widehat{BDE}\left(=90^o\right)\)
\(BE\)là cạnh chung
Do đó:\(\Delta ABE=\Delta DBE\)(cạnh huyền-cạnh gv)
b)Vì\(\Delta ABE=\Delta DBE\)(cm câu a) nên\(\widehat{ABE}=\widehat{DBE}\)(2 cạnh t/ứ)
Gọi\(K\)là giao điểm của\(AD\)và\(BE\)
Xét\(\Delta ABK\)và\(\Delta DBK\)có:
\(AB=DB\left(GT\right)\)
\(\widehat{ABK}=\widehat{DBK}\left(cmt\right)\)
\(BK\)là cạnh chung
Do đó:\(\Delta ABK=\Delta DBK\)(c-g-c)
\(\Rightarrow\widehat{AKB}=\widehat{DKB}\)(2 góc t/ứ)
\(AK=DK\)(2 cạnh t/ứ)
Ta có:\(\widehat{AKB}+\widehat{DKB}=180^o\)(2 góc KB)
mà\(\widehat{AKB}=\widehat{DKB}\left(cmt\right)\)
\(\Rightarrow\widehat{AKB}=\widehat{DKB}=\frac{180^o}{2}=90^o\)
\(\Rightarrow BK\perp AD\)
mà \(K\)là trung điểm của\(AD\)do\(AK=DK\left(cmt\right)\)
\(\Rightarrow BK\)là đường trung trực của\(AD\)
c)Xét\(\Delta ABC\)và\(\Delta DBF\)có:
\(\widehat{B}\)là góc chung
\(AB=DB\left(GT\right)\)
\(\widehat{BAC}=\widehat{BDF}\left(=90^o\right)\)
Do đó:\(\Delta ABC=\Delta DBF\)(g-c-g)
\(\Rightarrow BC=BF\)(2 cạnh t/ứ)
Xét\(\Delta BCF\)có:\(BC=BF\left(cmt\right)\)
Do đó:\(\Delta BCF\)cân tại\(A\)(Định nghĩa\(\Delta\)cân)
a: góc C=90-60=30 độ
b: Xét ΔBAE vuông tại A và ΔBHE vuông tại H có
BE chung
BA=BH
=>ΔBAE=ΔBHE
=>góc ABE=góc HBE
=>BE là phân giác của góc ABC
c: Xét ΔBKC có
KH,CA là đường cao
KH cắt CA tại E
=>E là trực tâm
=>BE vuông góc KC
a: góc A=90 độ
b: Xét ΔBAE vuông tại A và ΔBHE vuông tại H có
BE chung
BA=BH
=>ΔBAE=ΔBHE
=>góc ABE=góc HBE
=>BE là phân giác của góc ABC
c: Xét ΔBDC có
DH,CA là đường cao
DH cắt CA tại E
=>E là trực tâm
=>BE vuông góc DC
d: cosB=AB/BC=1/2
=>góc B=60 độ
a: goc C=90-60=30 độ
b: Xét ΔBAE vuông tại A và ΔBHE vuông tại H có
BE chung
BA=BH
=>ΔBAE=ΔBHE
=>góc ABE=góc HBE
=>BE là phân giác của góc ABC
c: Xét ΔBKC có
KH,CA là đường cao
KH cắt CA tại E
=>E là trực tâm
=>BE vuông góc KC
a: Xét ΔABI vuông tại A và ΔEBI vuông tại E có
BI chung
BA=BE
=>ΔBAI=ΔBEI
b: Xét ΔIAF vuông tại A và ΔIEC vuông tại E có
IA=IE
góc AIF=góc EIC
=>ΔIAF=ΔIEC
=>IF=IC
=>ΔIFC cân tại I
c: ΔIAF=ΔIEC
=>AF=EC
=>BF=BC
mà IF=IC
nên BI là trung trực của CF
=>BI vuông góc CF
thiếu phần d ạ