K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: góc C=90-60=30 độ

b: Xét ΔBAE vuông tại A và ΔBHE vuông tại H có

BE chung

BA=BH

=>ΔBAE=ΔBHE

=>góc ABE=góc HBE

=>BE là phân giác của góc ABC

c: Xét ΔBKC có

KH,CA là đường cao

KH cắt CA tại E

=>E là trực tâm

=>BE vuông góc KC

a: góc C=90-60=30 độ

b: Xét ΔBAE vuông tại A và ΔBHE vuông tại H có

BE chung

BA=BH

=>ΔBAE=ΔBHE

=>góc ABE=góc HBE

=>BE là phân giác của góc ABC

c: Xét ΔEAK vuông tại A và ΔEHC vuông tại H có

EA=EH

góc AEK=góc HEC
=>ΔEAK=ΔEHC

=>EK=EC và AK=HC

mà BA=BH

nên BK=BC

mà EK=EC

nên BE là trung trực của KC

=>BE vuong góc KC

a: goc C=90-60=30 độ

b: Xét ΔBAE vuông tại A và ΔBHE vuông tại H có

BE chung

BA=BH

=>ΔBAE=ΔBHE

=>góc ABE=góc HBE

=>BE là phân giác của góc ABC

c: Xét ΔBKC có

KH,CA là đường cao

KH cắt CA tại E

=>E là trực tâm

=>BE vuông góc KC

a: góc A=90 độ

b: Xét ΔBAE vuông tại A và ΔBHE vuông tại H có

BE chung

BA=BH

=>ΔBAE=ΔBHE

=>góc ABE=góc HBE

=>BE là phân giác của góc ABC

c: Xét ΔBDC có

DH,CA là đường cao

DH cắt CA tại E

=>E là trực tâm

=>BE vuông góc DC

d: cosB=AB/BC=1/2

=>góc B=60 độ

a: Xét ΔABE vuông tại A và ΔHBE vuông tại H có 

BE chung

\(\widehat{ABE}=\widehat{HBE}\)

Do đó: ΔABE=ΔHBE

Suy ra: BA=BH và EA=EH

Xét ΔAEK vuông tại A và ΔHEC vuông tại H có 

EA=EH

\(\widehat{AEK}=\widehat{HEC}\)

Do đó: ΔAEK=ΔHEC

Suy ra: EK=EC và AK=HC

Ta có: BA+AK=BK

BH+HC=BC

mà BA=BH

và AK=HC

nên BK=BC

Ta có: BK=BC

nên B nằm trên đường trung trực của KC(1)

Ta có: EK=EC

nên E nằm trên đường trung trực của KC\(\left(2\right)\)

Từ (1) và \(\left(2\right)\) suy ra BE là đường trung trực của KC

hay BE\(\perp\)KC

b: Ta có: AE=EH

mà EH<EC

nên AE<CE

a: Xét ΔBKC có

KH,CA là đường cao

KH cắt CA tại E

=>E là trực tâm

=>BE vuông góc KC

b: Xét ΔBAE vuông tại A và ΔBHE vuông tại H có

BE chung

góc ABE=góc HBE

=>ΔBAE=ΔBHE

=>BA=BH 

c: Xét ΔBKC có

BE vừa là đường cao, vừa là phân giác

=>ΔBKC cân tại B