K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: góc AEH=góc ADH=góc DAE=90 độ

=>ADHE là hình chữ nhật

b: Xét ΔABH vuông tại H và ΔAHD vuông tại D có

góc BAH chung

=>ΔABH đồng dạngvói ΔAHD

c: ΔHAC vuông tại H có HE là đường cao

nên HE^2=AE*EC

a: góc AEH=góc ADH=góc DAE=90 độ

=>AEHD nội tiếp

b: Xét ΔABH vuông tại H và ΔAHD vuông tại D có

góc BAH chung

=>ΔABH đồng dạng với ΔAHD

c: ΔAHC vuông tại H có HE vuông góc AC

nên HE^2=AE*EC

a: góc AEH=góc ADH=góc DAE=90 độ

=>AEHD là hình chữ nhật

b: Xét ΔADH vuông tại D và ΔAHB vuông tại H có

góc DAH chung

=>ΔADH đồng dạng với ΔAHB

c: ΔAHC vuông tại H có HE vuông góc AC

nên HE^2=AE*EC

a: góc AEH=góc ADH=góc DAE=90 độ

=>ADHE là hình chữ nhật

b: Xét ΔADH vuông tại D và ΔAHB vuông tại H có

góc DAH chung

=>ΔADH đồng dạng với ΔAHB

c: \(BC=\sqrt{9^2+12^2}=15\left(cm\right)\)

a: Xét ΔABH vuông tại H và ΔAHD vuông tại D có 

góc BAH chung

Do đó: ΔABH∼ΔAHD

b: Xét ΔAHC vuông tại H có HE là đường cao

nên \(HE^2=AE\cdot EC\)

a) Xét ΔABH vuông tại H và ΔAHE vuông tại E có 

\(\widehat{BAH}\) chung

Do đó: ΔABH\(\sim\)ΔAHE(g-g)

b) Xét ΔAEH vuông tại E và ΔHEB vuông tại E có 

\(\widehat{EAH}=\widehat{EHB}\left(=90^0-\widehat{EBH}\right)\)

Do đó: ΔAEH\(\sim\)ΔHEB(g-g)

Suy ra: \(\dfrac{EA}{EH}=\dfrac{EH}{EB}\)(Các cặp cạnh tương ứng tỉ lệ)

hay \(HE^2=AE\cdot BE\)(đpcm)

22 tháng 5 2021

a, Xét △ABH và △AHD có:

∠AHB=∠ADH (=90o) , ∠BAH chung

⇒ △ABH ∼ △AHD (g.g)

b, Xét △AHE và △HCE có:

∠AHE=∠ACH (cùng phụ ∠AHC), ∠AEH=∠CEH (=90o)

⇒ △AHE ∼ △HCE (g.g)

⇒ \(\dfrac{HE}{EC}=\dfrac{AE}{HE}\) ⇒ HE2=AE.EC

 

22 tháng 5 2021

undefined

a: Xét tứ giác ADHE có 

\(\widehat{ADH}=\widehat{AEH}=\widehat{EAD}=90^0\)

Do đó: ADHE là hình chữ nhật

b: BC=10cm

AH=4,8cm

BH=3,6cm

CH=6,4cm