K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔABH vuông tại H và ΔAHD vuông tại D có 

góc BAH chung

Do đó: ΔABH∼ΔAHD

b: Xét ΔAHC vuông tại H có HE là đường cao

nên \(HE^2=AE\cdot EC\)

AH
Akai Haruma
Giáo viên
29 tháng 4 2023

Lời giải:
a. Xét tam giác $ABH$ và $AHD$ có:

$\widehat{A}$ chung

$\widehat{AHB}=\widehat{ADH}=90^0$

$\Rightarrow \triangle ABH\sim \triangle AHD$ (g.g)

b. Xét tam giác $AEH$ và $HEC$ có:
$\widehat{AEH}=\widehat{HEC}=90^0$

$\widehat{EAH}=90^0-\widehat{AHE}=\widehat{EHC}$ 

$\Rightarrow \triangle AEH\sim \triangle HEC$ (g.g)

$\Rightarrow \frac{AE}{EH}=\frac{HE}{EC}$

$\Rightarrow HE^2=AE.EC$

c. Từ $\triangle ABH\sim \triangle AHD$ (phần a) suy ra:
$\frac{AB}{AH}=\frac{AH}{AD}$

$\Rightarrow AH^2=AB.AD$ 

Tương tự ta cũng có thể cm $\triangle AHE\sim \triangle ACH$

$\Rightarrow AH^2=AE.AC$ 

$\Rightarrow AB.AD=AE.AC$

$\Rightarrow \frac{AB}{AE}=\frac{AC}{AD}$

$\Rightarrow \triangle ABE\sim \triangle ACD$ (c.g.c)

$\Rightarrow \widehat{ABE}=\widehat{ACD}$ hay $\widehat{DBM}=\widehat{ECM}$

Xét tam giác $DBM$ và $ECM$ có:

$\widehat{DBM}=\widehat{ECM}$ (cmt) 

$\widehat{DMB}=\widehat{EMC}$ (đối đỉnh)

$\Rightarrow \triangle DBM\sim \triangle ECM$ (g.g)

 

AH
Akai Haruma
Giáo viên
29 tháng 4 2023

Hình vẽ:

a: góc AEH=góc ADH=góc DAE=90 độ

=>ADHE là hình chữ nhật

b: Xét ΔABH vuông tại H và ΔAHD vuông tại D có

góc BAH chung

=>ΔABH đồng dạngvói ΔAHD

c: ΔHAC vuông tại H có HE là đường cao

nên HE^2=AE*EC

22 tháng 5 2021

a, Xét △ABH và △AHD có:

∠AHB=∠ADH (=90o) , ∠BAH chung

⇒ △ABH ∼ △AHD (g.g)

b, Xét △AHE và △HCE có:

∠AHE=∠ACH (cùng phụ ∠AHC), ∠AEH=∠CEH (=90o)

⇒ △AHE ∼ △HCE (g.g)

⇒ \(\dfrac{HE}{EC}=\dfrac{AE}{HE}\) ⇒ HE2=AE.EC

 

22 tháng 5 2021

undefined

a: Xét ΔABH vuông tại H và ΔAHD vuông tại D có

góc BAH chung

=>ΔABH đồng dạng với ΔAHD

b: ΔHAC vuông tại H có HE vuông góc AC

nên HE^2=AE*EC

22 tháng 4 2015

Tam giác vuông ADH và tam giác vuông AHB có góc A chung nên đồng dạng => AD/AH = AH/AB => AH2 = AD.AB

cmtt ta cũng có AH2 = AE.AB => AD.AB = AE. AC

Xét tam giác ABE và tam giác ACD có góc A chung và AB/AC = AE/AD (cmt)

=> tg ABE đồng dạng tg ACD (c-g-c) => góc ABE = góc ACD

đến đây bn tự cm tiếp nhé! 

23 tháng 4 2019

cmtt ở đâu ra z bạn

5 tháng 3 2022

undefinedundefinedundefined

 

a) Xét ΔABH vuông tại H và ΔAHE vuông tại E có 

\(\widehat{BAH}\) chung

Do đó: ΔABH\(\sim\)ΔAHE(g-g)

b) Xét ΔAEH vuông tại E và ΔHEB vuông tại E có 

\(\widehat{EAH}=\widehat{EHB}\left(=90^0-\widehat{EBH}\right)\)

Do đó: ΔAEH\(\sim\)ΔHEB(g-g)

Suy ra: \(\dfrac{EA}{EH}=\dfrac{EH}{EB}\)(Các cặp cạnh tương ứng tỉ lệ)

hay \(HE^2=AE\cdot BE\)(đpcm)

10 tháng 4 2022

a, Xét △ABH và △AHD có:

∠AHB=∠ADH (=90o) , ∠BAH chung

⇒ △ABH ∼ △AHD (g.g)

b, Xét △AHE và △HCE có:

∠AHE=∠ACH (cùng phụ ∠AHC), ∠AEH=∠CEH (=90o)

⇒ △AHE ∼ △HCE (g.g)

⇒ HEEC=AEHEHEEC=AEHE ⇒ HE2=AE.EC

10 tháng 4 2022

undefined