Cho tam giác ABC vuông cân tại A. Các điểm D, E, F lần lượt thuộc các cạnh AB, BC và CA sao cho DA/DB=EB/EC=FC/FA . Tính góc tạo bởi AE và DF
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: BC=căn 15^2+20^2=25cm
EC=25-5=20cm
ED//AC
=>BD/DA=BE/EC=1/4
=>BD/1=DA/4=15/5=3
=>BD=3cm; DA=12cm
EF//AB
=>FC/FA=EC/EB=4
=>FC/4=FA/1=20/5=4
=>FC=16cm; FA=4cm
b: DE=căn 5^2-3^2=4cm
=>C BDE=3+4+5=12cm
C CEF/C CAB=CE/CB=20/25=4/5
=>C CEF=4/5*(15+20+25)=4/5*60=48cm
Lời giải:
a) Vì $FN\parallel AC$ nên áp dụng định lý Talet:
\(\frac{NC}{NB}=\frac{FA}{FB}=\frac{DB}{DC}\)
Nếu $NB=DC$ thì do $MB=MC$ nên $MB-NB=MC-DC$
$\Leftrightarrow MN=MD$ nên $M$ là trung điểm $DN$.
Nếu $NB\neq DC$ thì áp dụng TCDTSBN: $\frac{NC}{NB}=\frac{DB}{DC}=\frac{NC-DB}{NB-DC}=\frac{DC-NB}{NB-DC}=-1< 0$ (vô lý)
Vậy ta có đpcm.
b)
Vì $M$ là trung điểm $DN$, $P$ là trung điểm $DF$ nên $MP$ là đtb ứng với cạnh $FN$
$\Rightarrow MP\parallel FN$ và $MP=\frac{1}{2}FN(1)$
Mặt khác:
$FN\parallel AC\Rightarrow FN\parallel AE(2)$
$\frac{NC}{NB}=\frac{FA}{FB}=\frac{EC}{EA}$ nên theo Talet đảo thì $EN\parallel AB$ hay $EN\parallel AF(3)$
Từ $(2); (3)$ suy ra $AENF$ là hình bình hành nên $AE=FN(4)$
Từ $(1); (2);(4)$ suy ra $MP\parallel AE$ và $MP=\frac{1}{2}AE$ (đpcm)
c) Gọi $G$ là giao điểm $AM$ và $EP$. Theo định lý Talet:
$\frac{AG}{GM}=\frac{EG}{GP}=\frac{AE}{MP}=2$
$\Rightarrow \frac{AG}{AM}=\frac{EG}{EP}=\frac{2}{3}$
Do đó $G$ chính là trọng tâm của $ABC$ và $DEF$. Ta có đpcm.