K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 4 2023

a)Do m ∈ Z => 2m+3, m+1  ∈ Z

Để 2m+3/m+1  ∈ Z => 2m+3 ⋮ m+1

Mà m+1 ⋮ m+1 => 2(m+1) ⋮ m+1 => 2m+2 ⋮ m+1

=> (2m+3)-(2m+2) ⋮ m+1 => 1 ⋮ m+1

Do m+1 ∈ Z => m+1 ∈ {1; -1}

Nếu m + 1 = 1 => m = 0 (t/m)

m+1 = -1 => m = -2 (t/m)

Vậy m ∈ {0; -2}

b) Gọi ƯCLN(2m+3, m+1) = d (d ∈ N*)

=> 2m+3 

m+1 ⋮ d => 2(m+1) ⋮ d => 2m+2 ⋮ d

=> (2m+3) - (2m+2) ⋮ d

=> 1 ⋮ d

Mà d∈ N* => d =1

Vậy phân số B tối giản (đpcm)

a: Để A là số nguyên thì \(2m+3⋮m+1\)

\(\Leftrightarrow2m+2+1⋮m+1\)

\(\Leftrightarrow m+1\in\left\{1;-1\right\}\)

hay \(m\in\left\{0;-2\right\}\)

b: Gọi a=UCLN(2m+3;m+1)

\(\Leftrightarrow2m+3-2m-2⋮a\)

\(\Leftrightarrow1⋮a\)

=>UCLN(2m+3;m+1)=1

=>A là phân số tối giản

29 tháng 1 2021

a/ \(A=\dfrac{3n+2}{n+1}=\dfrac{3\left(n+1\right)-1}{n+1}=3-\dfrac{1}{n+1}\)

Ta có : \(\left\{{}\begin{matrix}A\in Z\\3\in Z\end{matrix}\right.\) \(\Leftrightarrow\dfrac{1}{n+1}\in Z\)

\(\Leftrightarrow1⋮n+1\Leftrightarrow n+1\inƯ\left(1\right)=\left\{1;-1\right\}\)

Ta có :

+) \(n+1=1\Leftrightarrow n=0\left(tm\right)\)

+) \(n+1=-1\Leftrightarrow n=-2\left(tm\right)\)

Vậy...

b/ Gọi \(d=ƯCLN\) \(\left(3n+2,n+1\right)\) \(\left(d\in N\cdot\right)\)

Ta có : 

\(\left\{{}\begin{matrix}3n+2⋮d\\n+1⋮d\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}3n+2⋮d\\3n+3⋮d\end{matrix}\right.\)

\(\Leftrightarrow1⋮d\)

\(\Leftrightarrow d\inƯ\left(1\right)=\left\{1\right\}\)

\(\LeftrightarrowƯCLN\) \(\left(3n+2,n+1\right)=1\)

\(\Leftrightarrow A=\dfrac{3n+2}{n+1}\) là phân số tối giản với mọi n 

Vậy...

29 tháng 1 2021

tm là gì v

25 tháng 7 2016

gọi UCLN(2n+1,3n+1)=d

=>6n+2 chia hết cho d

6n+3 chia hết cho d

=>1 chia hết cho d

=>d=1

=>2n+1/3n+1 tối giản

25 tháng 7 2016

các bạn giải giúp mình câu b với 

11 tháng 4 2023

a,A = \(\dfrac{3}{x-1}\)

\(\in\) Z \(\Leftrightarrow\)  3 ⋮ \(x-1\)  ⇒ \(x-1\) \(\in\) { -3; -1; 1; 3}

                                    \(x\) \(\in\) { -2; 0; 2; 4}

b, B =  \(\dfrac{x-2}{x+3}\)  

\(\in\) Z \(\Leftrightarrow\) \(x-2\) \(⋮\) \(x+3\) ⇒ \(x+3-5\) \(⋮\) \(x+3\)

                                   ⇒               5  \(⋮\) \(x+3\)

                                  \(x+3\) \(\in\){ -5; -1; 1; 5}

                                  \(x\) \(\in\) { -8; -4; -2; 2}

11 tháng 4 2023

a.\(A=\dfrac{3}{x-1}\)có giá trị là 1 số nguyên khi \(3\) ⋮ \(x-1.\)

\(\Rightarrow x-1\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}.\)

Ta có bảng:

  \(x-1\)      \(1\)    \(-1\)      \(3\)    \(-3\)
     \(x\)      \(2\)       \(0\)      \(4\)    \(-2\)
      TM     TM    TM    TM

Vậy \(x\in\left\{-2;0;2;4\right\}.\)

b.\(B=\dfrac{x-2}{x+3}\)có giá trị là 1 số nguyên khi \(x-2\) ⋮ \(x+3.\)

\(\Rightarrow\left(x+3\right)-5⋮x+3.\) 

Mà x+3 ⋮ x+3 \(\Rightarrow\) Ta cần: \(-5⋮x+3\Rightarrow x+3\inƯ\left(-5\right)=\left\{\pm1;\pm5\right\}.\) 
Ta có bảng:

  \(x+3\)      \(1\)    \(-1\)      \(5\)     \(-5\)
     \(x\)   \(-2\)    \(-4\)      \(2\)     \(-8\)
     TM    TM    TM    TM

Vậy \(x\in\left\{-8;-4;-2;2\right\}.\)
 

 

a: \(A=\dfrac{-13}{a}+\dfrac{7}{a}=\dfrac{-6}{a}\)

Để A là số nguyên thì \(a\inƯ\left(-6\right)\)

hay \(a\in\left\{1;-1;2;-2;3;-3;6;-6\right\}\)

b: \(B=\dfrac{2b-3}{15}+\dfrac{b+1}{5}=\dfrac{2b-3+3b+3}{15}=\dfrac{5b}{15}=\dfrac{b}{3}\)

Để B là số nguyên thì b chia hết cho 3

hay b=3k, với k là số nguyên

a: A là phân số khi 3n+3<>0

=>n<>-1

b: \(A=\dfrac{12}{3\left(n+1\right)}=\dfrac{4}{n+1}\)

Để A nguyên thì \(n+1\in\left\{1;-1;2;-2;4;-4\right\}\)

=>\(n\in\left\{0;-2;1;-3;3;-5\right\}\)

7 tháng 5 2022

\(B=\dfrac{2\left(m+1\right)+1}{m+1}=2+\dfrac{1}{m+1}\)

Để B nguyên 

\(\Rightarrow\left(m+1\right)\inƯ\left(1\right)=\left\{\pm1\right\}\)

m+1     1         -1

m         0         -2

7 tháng 5 2022

\(B=\dfrac{2m+3}{m+1}=\dfrac{2m+2+1}{m+1}=\dfrac{2\left(m+1\right)+1}{m+1}\)ư

\(B=\dfrac{2\left(m+1\right)}{m+1}+\dfrac{1}{m+1}=2+\dfrac{1}{m+1}\)

để \(B\in Z=>m+1\inƯ\left(1\right)=\left\{\pm1\right\}\)

\(\left\{{}\begin{matrix}m+1=1\\m+1=-1\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}m=0\\m=-2\end{matrix}\right.\)

vậy \(m\in\left\{0;-2\right\}\left(thì\right)B\in Z\)