Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)Do m ∈ Z => 2m+3, m+1 ∈ Z
Để 2m+3/m+1 ∈ Z => 2m+3 ⋮ m+1
Mà m+1 ⋮ m+1 => 2(m+1) ⋮ m+1 => 2m+2 ⋮ m+1
=> (2m+3)-(2m+2) ⋮ m+1 => 1 ⋮ m+1
Do m+1 ∈ Z => m+1 ∈ {1; -1}
Nếu m + 1 = 1 => m = 0 (t/m)
m+1 = -1 => m = -2 (t/m)
Vậy m ∈ {0; -2}
b) Gọi ƯCLN(2m+3, m+1) = d (d ∈ N*)
=> 2m+3
m+1 ⋮ d => 2(m+1) ⋮ d => 2m+2 ⋮ d
=> (2m+3) - (2m+2) ⋮ d
=> 1 ⋮ d
Mà d∈ N* => d =1
Vậy phân số B tối giản (đpcm)
a) M là phân số khi \(3-a\ne0\Rightarrow a\ne3\)
b) Mlà số nguyên khi 2a+1 chia hết ch 3-a mà 2a+1 chia 3-a dư 7 nên muốn 2a+1 chia hết cho 7 thì 3-a phải là ước của 7.
Ta có ước của 7 là s=(-1;1;-7;7)
Ta xét các trường hợp:
trường hợp 1: \(-a+3=-1\Rightarrow-a=-4\Rightarrow a=4;\)
trường hợp 2: \(-a+3=1\Rightarrow-a=-2\Rightarrow a=2;\)
trường hợp 3: \(-a+3=-7\Rightarrow-a=-10\Rightarrow a=10;\)
trường hợp 4: \(-a+3=7\Rightarrow-a=4\Rightarrow a=-4;\)
vậy với a=(-4;2;4;10) thì M là 1 số nguyên.
a: Để A là số nguyên thì \(2m+3⋮m+1\)
\(\Leftrightarrow2m+2+1⋮m+1\)
\(\Leftrightarrow m+1\in\left\{1;-1\right\}\)
hay \(m\in\left\{0;-2\right\}\)
b: Gọi a=UCLN(2m+3;m+1)
\(\Leftrightarrow2m+3-2m-2⋮a\)
\(\Leftrightarrow1⋮a\)
=>UCLN(2m+3;m+1)=1
=>A là phân số tối giản
\(B=\dfrac{2\left(m+1\right)+1}{m+1}=2+\dfrac{1}{m+1}\)
Để B nguyên
\(\Rightarrow\left(m+1\right)\inƯ\left(1\right)=\left\{\pm1\right\}\)
m+1 1 -1
m 0 -2
\(B=\dfrac{2m+3}{m+1}=\dfrac{2m+2+1}{m+1}=\dfrac{2\left(m+1\right)+1}{m+1}\)ư
\(B=\dfrac{2\left(m+1\right)}{m+1}+\dfrac{1}{m+1}=2+\dfrac{1}{m+1}\)
để \(B\in Z=>m+1\inƯ\left(1\right)=\left\{\pm1\right\}\)
\(\left\{{}\begin{matrix}m+1=1\\m+1=-1\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}m=0\\m=-2\end{matrix}\right.\)
vậy \(m\in\left\{0;-2\right\}\left(thì\right)B\in Z\)