Cho Tam giác ABC cân tại A,kẻ AH vuông góc với BC. A) CM: tam giác ABH=tam giác ÁCH B)gọi M là trung điểm,trên tia đối của tia MA lấy điểm N sao cho MA = MN . CM:tam giác AHM= tam giác NBM và NB vuông góc BC C) so sánh BAN và BNA Các bạn giúp mình nhé cảm ơn rất nhiều
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)Xét tam giác AMH và tam giác NMB,ta có:
MB=MH(gt)
góc NMB=gócAMH(vì 2 góc đối đỉnh)
MN=MA(gt)
Do đó: tam giác AMH=tam giác NMB(c.g.c)
b) +) Ta có: △ AMH= △NMB(theo câu a)
⟹AH=NB( 2 cạnh tương ứng) ⟹đpcm
a) Xét hai tam giác AMH và NMB có:
MA = MN (gt)
MB = MH (M là trung điểm BH)
ˆAMH=ˆBMNAMH^=BMN^ (đối đỉnh)
⇒ΔAMH=ΔNMB(c.g.c)⇒ΔAMH=ΔNMB(c.g.c)
Vì ΔAMH=ΔNMB(c.g.c)ΔAMH=ΔNMB(c.g.c) nên góc H = góc B
Mà ˆH=900H^=900 nên ˆB=ˆH=900B^=H^=900 (yttu)
Do đó BC⊥NBBC⊥NB
b) Ta có AH = NB (do ΔAMH=ΔNMB(c.g.c)ΔAMH=ΔNMB(c.g.c))
Vì AH là đường cao của tam giác cân ABC nên AH < AB
Do đó NB < AB
c) Ta có ˆMAH=ˆMNBMAH^=MNB^ (do ΔAMH=ΔNMB(c.g.c)ΔAMH=ΔNMB(c.g.c))
Vì NB < AB nên góc BAM < góc MNB (quan hệ góc và cạnh đối diện trong tam giác ABN)
Do đó góc BAM < góc MAH
d) Vì tam giác ABC cân tại A có AH vuông BC nên AH đồng thời là đường trung trực BC
Mặt khác, I nằm trên đường trung trực BC nên A, H, I thẳng hàng
a) Xét ΔAMH và ΔNMB có
MA=MN(gt)
\(\widehat{AMH}=\widehat{NMB}\)(hai góc đối đỉnh)
MH=MB(M là trung điểm của BH)
Do đó: ΔAMH=ΔNMB(c-g-c)
hình bạn tự vẽ nhé!!
a, Xét \(\Delta\)AHB và \(\Delta\)AHC
có \(\widehat{AHB}=\widehat{AHC}\left(=90^o\right)\)
AB =AC (\(\Delta\)ABC cân)
\(\widehat{ABC}=\widehat{ACB}\)(\(\Delta\)ABC cân)
=> \(\Delta AHB=\Delta AHC\)(ch-gn)
b, CM: \(\Delta AMH=\Delta NMB\)(c.g.c)
=> AH=BN (2 cạnh tương ứng)
c,CM: \(\Delta ABM=\Delta NHM\)(c.g.c)
=> \(\hept{\begin{cases}\widehat{BAM}=\widehat{HNM}\left(1\right)\\AB=NH\end{cases}}\)
Mà AB>AH(trong tam giác vuông cạnh huyền là cạch lớn nhất)
Từ dó => NH > AH
Xét \(\Delta AHN\)có NH>AH(cmt)
=> \(\widehat{MAH}>\widehat{HNM}\left(2\right)\)
Từ (1)(2)=> \(\widehat{BAM}< \widehat{MAH}\)
d,Vì AI là đg t tuyến của NC (3)
CM là đg t tuyến của AN
Mà AI cắt CM tại H
Từ đấy=> H là trọng tâm \(\Delta ACN\)
=> AH là đg t tuyến của NC (4)
Từ (3)(4)=> A , H , I thẳng hàng nhau
chúc bạn hk tốt !!(nhớ k cho mình nha!!@@)
a) Xét tam giác AHB và tam giác AHC có :
AB = AC ( ABC cân tại A )
\(\widehat{AHB}=\widehat{AHC}\left(=90^o\right)\)
Chung AH
\(\Rightarrow\) tam giác AHB = tam giác AHC ( ch-cgv )
b) Xét tam giác BMN và tam giác HMA có :
BM = MH
\(\widehat{BMN}=\widehat{AMH}\left(đđ\right)\)
AM = MN
\(\Rightarrow\)tam giác BMN = tam giác HMA ( c-g-c )
\(\Rightarrow AH=NB\)
c) từ 2 tam giác bằng nhau ở câu b \(\Rightarrow\widehat{MAH}=\widehat{MNB}\)(1)
Xét tam giác AHB vuông tại H có AB > AH ( cạnh huyền )
Mà AH = NB ( câu b )
\(\Rightarrow AB>BN\)
Xét tam giác ABN có AB > BN
\(\Rightarrow\widehat{MNB}>\widehat{BAM}\)( 2 )
Từ (1) và (2) suy ra \(\widehat{BAM}< \widehat{MAH}\)
d) Xét tam giác CBN có :
CH = HB
NI = IC
\(\Rightarrow\) HI là đường trung bình tam giác CBN
\(\Rightarrow\) HI // BN ( 3 )
Từ 2 tam giác bằng nhau ở câu b \(\Rightarrow\widehat{MBN}=\widehat{MHA}=90^o\)
Ta có \(BN\perp BH\)
\(AH\perp BH\)
\(\Rightarrow\) AH // BN ( 4 )
Từ (3) và (4) \(\Rightarrow\) A ; H ; I thẳng hàng
Vậy ...
a: Xet ΔABH vuông tại H và ΔACH vuông tại H có
AB=AC
AH chung
=>ΔABH=ΔACH
b: Xet ΔAHM và ΔNBM có
MA=MN
góc AMH=góc NMB
HM=MB
=>ΔAMH=ΔNMB
=>góc NBM=90 độ
=>NB vuông góc BC
c: BN=AH
AH<AB
=>BN<BA
=>góc BAN<góc BNA