K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 8 2015

a) Xét ΔAMH và ΔNMB có:

       MB=MH (gt)

Góc BMN = HMA (đối đỉnh

       MA=MN (gt)

Vậy ΔAMH=ΔNMB. (c.g.c)

=> Góc MBN=MAH=90o(2 góc tương ứng)

Hay NB vuông góc với BC.

b) Vì ΔAMH=ΔNMB nên AH=NB (1)

ΔABH vuông tại H, có AH là đường cao, AB là đường xiên

nên AH<AB(quan hệ đường xiên và hình chiếu trong tam giác vuông). (2)

Từ (1) và (2) suy ra NB<AB.

c) Từ M kẻ MK vuông góc với AB tại K.

ΔBKM có KM là đường cao, MB là đường xiên nên MK<MB mà MB=MH

=> MK<MH => GÓc BAM<MAH(quan hệ giữa góc và cạnh đối diện trong tam giác).

d) câu này mình k chắc lắm

ΔACN có AI và CM là các đường trung tuyến giao nhau tại H nên H là trọng tâm của tam giác.

=> AH là trung tuyến kẻ từ đỉnh A đến NC, mà AI cũng là trung tuyến kẻ từ A đến NC nên 3 điểm A, H, I cùng nằm trên đường trung tuyến của NC

Vậy 3 điểm A, H, I thẳng Hàng.

vì bạn chưa học đường trung bình nên mình k dùng theo tiên đề ơ-clit được, câu d nếu sai thì cho xl nha!

a)Xét tam giác AMH và tam giác MNB 

Góc M1= Góc M2 ( đối đỉnh)

MA = MN (gt)

MB = MH ( M là trung điểm của BH)

=> tam giác AMH = tam giác MNB ( cgc)

tam giác AMH = tam giác MNB (cmt)

góc B = góc H (góc tương ứng)

Mà góc H = 90 độ ( kẻ Ah vuông góc với BC )

Vậy góc B = góc H = 90 độ

=> NB vuông góc với BC

b)tam giác AMH = tam giác MNB(câu a)

AH=NB( cạnh tương ứng)

Xét tam giác ABH, có:

AB > AH ( quan hệ giữa cạnh huyền và cạnh góc vuông)

Mà AH=NB(chứng minh trên)

=> AB > NB

12 tháng 5 2021

a) Xét hai tam giác AMH và NMB có:

MA = MN (gt)

MB = MH (M là trung điểm BH)

ˆAMH=ˆBMNAMH^=BMN^ (đối đỉnh)

⇒ΔAMH=ΔNMB(c.g.c)⇒ΔAMH=ΔNMB(c.g.c)

Vì ΔAMH=ΔNMB(c.g.c)ΔAMH=ΔNMB(c.g.c) nên góc H = góc B

Mà ˆH=900H^=900 nên ˆB=ˆH=900B^=H^=900 (yttu)

Do đó BC⊥NBBC⊥NB

b) Ta có AH = NB (do ΔAMH=ΔNMB(c.g.c)ΔAMH=ΔNMB(c.g.c))

Vì AH là đường cao của tam giác cân ABC nên AH < AB 

Do đó NB < AB

c) Ta có ˆMAH=ˆMNBMAH^=MNB^ (do ΔAMH=ΔNMB(c.g.c)ΔAMH=ΔNMB(c.g.c))

Vì NB < AB nên góc BAM < góc MNB (quan hệ góc và cạnh đối diện trong tam giác ABN)

Do đó góc BAM < góc MAH

d) Vì tam giác ABC cân tại A có AH vuông BC nên AH đồng thời là đường trung trực BC

Mặt khác, I nằm trên đường trung trực BC nên A, H, I thẳng hàng 

a) Xét ΔAMH và ΔNMB có

MA=MN(gt)

\(\widehat{AMH}=\widehat{NMB}\)(hai góc đối đỉnh)

MH=MB(M là trung điểm của BH)

Do đó: ΔAMH=ΔNMB(c-g-c)

6 tháng 5 2021

a)Xét tam giác AMH và tam giác NMB,ta có:

MB=MH(gt)

góc NMB=gócAMH(vì 2 góc đối đỉnh)

MN=MA(gt)

Do đó: tam giác AMH=tam giác NMB(c.g.c)

b) +) Ta có:  △ AMH= △NMB(theo câu a)

 ⟹AH=NB( 2 cạnh tương ứng) ⟹đpcm

11 tháng 5 2019

a) xét tam giác AMH và tam giác NMB có:

          AM=MN(gt)

        \(\widehat{AMH}\)=\(\widehat{NMB}\)(vì đối đỉnh)

        BM=MH(gt)

=> tam giác AMH=tam giác NMB(c.g.c)

=> \(\widehat{NBM}\)=\(\widehat{AHM}\)mà góc AHM=90 độ => \(\widehat{NBM}\)=90 độ

=> NB\(\perp\)BC

b) vì tam giác AMH=tam giác NMB(câu a)=> AH=NB(2 cạnh tương ứng)

trong tam giác AHB có: AB>AH(vì cạnh huyền lớn hơn cạnh góc vuông)

mà AH=NB(cmt) => NB<AB

c) vì theo câu b ta có NB<AB => \(\widehat{BNA}\)>\(\widehat{BAN}\)(góc đối diện với cạnh lớn hơn là góc lớn hơn)

mà \(\widehat{BNA}\)=\(\widehat{MAH}\)(theo câu a) => \(\widehat{BAM}\)\(\widehat{MAH}\)

d) 

A B C H M N I

27 tháng 5 2018

hình bạn tự vẽ nhé!!

a, Xét \(\Delta\)AHB và \(\Delta\)AHC
có  \(\widehat{AHB}=\widehat{AHC}\left(=90^o\right)\)

AB =AC (\(\Delta\)ABC cân)

\(\widehat{ABC}=\widehat{ACB}\)(\(\Delta\)ABC cân)

=> \(\Delta AHB=\Delta AHC\)(ch-gn)

b, CM: \(\Delta AMH=\Delta NMB\)(c.g.c)

=> AH=BN (2 cạnh tương ứng)

c,CM: \(\Delta ABM=\Delta NHM\)(c.g.c)

=> \(\hept{\begin{cases}\widehat{BAM}=\widehat{HNM}\left(1\right)\\AB=NH\end{cases}}\)

Mà AB>AH(trong tam giác vuông cạnh huyền là cạch lớn nhất)

Từ dó => NH > AH

Xét \(\Delta AHN\)có NH>AH(cmt)

=> \(\widehat{MAH}>\widehat{HNM}\left(2\right)\)

Từ (1)(2)=> \(\widehat{BAM}< \widehat{MAH}\)

d,Vì AI là đg t tuyến của NC (3)

CM là đg t tuyến của AN

Mà AI cắt CM tại H

Từ đấy=> H là trọng tâm \(\Delta ACN\)

=> AH là đg t tuyến của NC (4)

Từ (3)(4)=> A , H , I thẳng hàng nhau

chúc bạn hk tốt !!(nhớ k cho mình nha!!@@) 

27 tháng 5 2018

B N A C I H M

a) Xét tam giác AHB và tam giác AHC có :

AB = AC ( ABC cân tại A )

\(\widehat{AHB}=\widehat{AHC}\left(=90^o\right)\)

Chung AH

\(\Rightarrow\) tam giác AHB = tam giác AHC ( ch-cgv )

b) Xét tam giác BMN và tam giác HMA có :

BM = MH

\(\widehat{BMN}=\widehat{AMH}\left(đđ\right)\)

AM = MN

\(\Rightarrow\)tam giác BMN = tam giác HMA ( c-g-c )

\(\Rightarrow AH=NB\)

c) từ 2 tam giác bằng nhau ở câu b  \(\Rightarrow\widehat{MAH}=\widehat{MNB}\)(1)

Xét tam giác AHB vuông tại H có AB > AH ( cạnh huyền )

Mà AH = NB ( câu b )

\(\Rightarrow AB>BN\)

Xét tam giác ABN có AB > BN 

\(\Rightarrow\widehat{MNB}>\widehat{BAM}\)( 2 )

Từ (1) và (2) suy ra  \(\widehat{BAM}< \widehat{MAH}\)

d) Xét tam giác CBN có :

CH = HB

NI = IC

\(\Rightarrow\) HI là đường trung bình tam giác CBN

\(\Rightarrow\) HI // BN ( 3 )

Từ 2 tam giác bằng nhau ở câu b  \(\Rightarrow\widehat{MBN}=\widehat{MHA}=90^o\)

Ta có  \(BN\perp BH\)

          \(AH\perp BH\)

\(\Rightarrow\) AH // BN ( 4 )

Từ (3) và (4) \(\Rightarrow\) A ; H ; I thẳng hàng

Vậy ...

19 tháng 8 2016

A C B H M N I

a) Xét ΔAMH và ΔNMB:

  • MB=MH(M là trung điểm BH)
  • Góc HMA= Góc BMN
  • MA=MH(gt)

Vậy   ΔAMH = ΔNMB(c.g.c)

Suy ra Góc AHM= Góc MBN(2 góc tương ứng)

Mà Góc AHM=90o(AH là đường cao ΔABC)

Nên Góc MBN=90o

Vậy NB vuông góc với BC

b) Ta có: ΔAMH = ΔNMB(cmt)

Nên AH=NB          

Vì AH là đường cao ΔABC cân tại A

Nên AH<AB         

Vì AH<AB(cmt)

Mà AH=NB

Nên NB<AB

c) và d) bạn đợi tí nhé

 

 

19 tháng 8 2016

bạn làm hộ mk yk d dc k