1. Giải hệ phương trình:
3√x - 2/x-y = 1 .
√4x + 1/x-y =3.
2. Một mảnh đất hình chữ nhật có độ dài đường chéo là 13 m; chiều dài lớn hơn chiều rộng 7 m. tính diện tích của mảnh đất đó.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1 :
a, - Gọi chiều dài chiều rộng hình chữ nhật là x và y ( m, x>y> 0 )
Ta có : x - y = 7 ( I )
- Áp dụng định lý pitago ta có : \(x^2+y^2=13^2=169\left(II\right)\)
- Từ (I) và (II ) ta có hệ phương trình : \(\left\{{}\begin{matrix}x=y+7\\x^2+y^2=169\end{matrix}\right.\)
\(\Leftrightarrow y^2+y^2+14y+49=169\)
\(\Leftrightarrow2y^2+14y-120=0\)
\(\Leftrightarrow\left[{}\begin{matrix}y=5\left(TM\right)\\y=-12\left(L\right)\end{matrix}\right.\)
=>x = 5 + 7 = 12 (m )
Vậy ...
a) Đặt chiều dài là a, chiều rộng là b ta có:
2(a+b) = 24 => a+b =12 (1)
Diện tích của mảnh đất là S= a.b
Tăng chiều dài 2m, giảm chiều rộng 1m diện tích sẽ là :
(a+2)(b-1) = a.b -a + 2b - 2
= S -a + 2b - 2= S+1
=>2b - a - 3 =0 => a = 2b -3 (2)
Thế (2) vào (1) ta có: 2b - 3 + b = 12 => 3b = 15 => b = 5, a = 12-5 = 7
Vậy chiều dài là 7m, chiều rộng là 5m
b) Tính detal = b^2 - 4ac = 4(m-1)^2 - 4(m-3)
detal = 4(m^2-2m+1) - 4m +12
= 4m^2 -12m +16
= 4(m^2-3m+4)
=4(m^2 -2.m.3/2 + 9/4 + 7/4)
=4(m-3/2)^2 + 7 >0 với mọi m
Do đó luôn có 2 nghiệm
Tổng hai đường chéo là
\(36\times2=72\left(m\right)\)
Đường chéo thứ nhất là :
\(\dfrac{72}{\left(4+5\right)}\times4=32\left(m\right)\)
Đường chéo thứ hai là :
\(32:\dfrac{4}{5}=40\left(m\right)\)
Diện tích HCN là :
\(\dfrac{\left(32\times40\right)}{2}=640\left(m^2\right)\)
Đ/s :...
tổng 2 đường chéo là:
36 x2 = 72(m)
đường chéo thứ nhất là :
72 : (4+5) x4 = 32(m)
đường chéo thứ 2 là:
72- 32 = 40 ( m)
diện tích hCN là:
32 x 40:2 = 640(m2)
1,gọi chiều rộng mảnh vườn là x(m)
chiều dài mảnh vườn là x+3 (m) (x>0)
vì tăng chiều dài thêm 2m và giảm chiều rộng 1m thì diện tích mảnh vườn không đổi nên ta có pt:
(x-1)(x+5)=x(x+3)
⇔\(x^2+5x-x-5=x^2+3x\Leftrightarrow x^2-x^2+5x-x-3x=5\Leftrightarrow x=5\) (TM)
vậy chiều rộng mảnh vườn là 5m
chiều dài mảnh vườn là 5+3=8m
2,bán kính đáy của hình trụ là 1,2:2= 0,6 (m)
thể tích của hình trụ là : V = 3,14.(0,6)\(^2\).1,8=2 (m\(^3\))
vậy thể tích của hình trụ đó là 2m\(^3\)
Câu 1:
Gọi x là chiều dài mảnh đất (0<x<14; x>y)
Gọi y là chiều rộng mảnh vườn (0<y<14)
Vì chu vi mảnh đất bằng 20m nên ta có PT: x+y=14 (1)
Vì đường chéo mảnh đất bằng 10m nên ta có PT:
x2+y2=100 (2)
Từ (1) và (2) ta có HPT: \(\left\{{}\begin{matrix}x+y=14\\x^2+y^2=100\end{matrix}\right.\)(HPT dễ rồi bạn tự giải nha)
⇔\(\left\{{}\begin{matrix}y=8\\y=6\end{matrix}\right.\)(TM)
Vậy ta có 2 tập nghiệm (x;y) là (6;8) và (8;6)
-Độ dài 2 cạnh mảnh đất lần lượt là: 6cm và 8cm
Câu 1:
Gọi a(m) và b(m) lần lượt là chiều dài và chiều rộng của mảnh đất(Điều kiện: a>0; b>0 và \(a\ge b\))
Vì chu vi mảnh đất là 28m nên ta có phương trình:
2(a+b)=28
hay a+b=14(1)
Vì đường chéo hình chữ nhật là 10m nên Áp dụng định lí Pytago, ta được:
\(a^2+b^2=100\)(2)
Từ (1) và (2) ta lập được hệ phương trình:
\(\left\{{}\begin{matrix}a+b=14\\a^2+b^2=100\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=14-b\\\left(14-b\right)^2+b^2=100\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=14-b\\b^2-28b+196+b^2-100=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=14-b\\2b^2-28b+96=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=14-b\\b^2-14b+48=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=14-b\\\left(b-6\right)\left(b-8\right)=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left[{}\begin{matrix}a=14-8=6\\b=14-6=8\end{matrix}\right.\\\left[{}\begin{matrix}b=6\\b=8\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=8\\b=6\end{matrix}\right.\)(thỏa ĐK)
Vậy: Độ dài hai cạnh của mảnh đất hình chữ nhật lần lượt là 8m và 6m
\(x^2-2mx+m-1=0\)
\(\Delta=b^2-4ac=4m^2-4\left(m-1\right)=4m^2-4m+4\)
\(=4\left(m^2-m+1\right)>0\)
\(=>m^2-m+1>0\)
\(=>m^2-2\times\frac{1}{2}m+\frac{1}{4}+\frac{3}{4}>0\)
\(=>\left(m-\frac{1}{2}\right)^2+\frac{3}{4}>0\)
Theo Vi-et ta có :\(\hept{\begin{cases}x_1x_2=m-1\\x_1+x_2=2m\end{cases}}\)
Ta có \(x_1^2+x_2^2=14\)
\(\left(x_1+x_2\right)^2-2x_1x_2=14\)
\(4m^2-2\left(m-1\right)=14\)
\(4m^2-2m+2-14=0\)
\(4m^2-2m-12=0\)
\(\orbr{\begin{cases}m=2\\m=\frac{-3}{2}\end{cases}}\)
Một hình chữ nhật có 2/3 m , chiều rộng bằng 9/10 chiều dài.Tính chu vi , diện tích hình chữ nhật đó?
2: Gọi chiều rộng là x
=>Chiều dài là x+7
Theo đề, ta co: x^2+(x+7)^2=13^2=169
=>2x^2+14x-120=0
=>x=5
=>Chiều dài là 12m
S=5*12=60m2