K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔBAI vuông tại A và ΔBEI vuông tại E có

BI chung

BA=BE

=>ΔBAI=ΔBEI

=>IA=IE

b: Xét ΔIAF vuông tại A và ΔIEC vuông tại E có

IA=IE

góc AIF=góc EIC

=>ΔIAF=ΔIEC

=>IF=IC và AF=EC

c: BA+AF=BF

BE+EC=BC

BA=BE; AF=EC

nên BF=BC

mà IF=IC

nên BI là trung trực của CF

=>BI vuông góc CF
Xét ΔBFC có BA/AF=BE/EC

nên AE//CF

a: Xét ΔBAI vuông tại A và ΔBEI vuông tại E co

BI chung

góc ABI=góc EBI

=>ΔBAI=ΔBEI

=>IA=IE

b: Xét ΔIAF vuông tại A và ΔIEC vuông tại E có

IA=IE

góc AIF=góc EIC

=>ΔIAF=ΔIEC
=>IF=IC và AF=EC

c: BA+AF=BF

BE+EC=BC

mà BA=BE; AF=EC

nên BF=BC

=>ΔBFC cân tại B

mà BI là phân giác

nên BI vuông góc FC

Xét ΔBFC co BA/BF=BE/BC

nên AE//CF

bạn ơi hình như b làm sai rồi ở phần a chỗ xét tam giác tại sao ABI=EBI

Xét ΔBAI vuông tại A và ΔBEI vuông tại E có

BI chung

BA=BE

=>ΔBAI=ΔBEI

=>AI=EI

1) Xét ΔABI và ΔEBI có

BA=BE(gt)

\(\widehat{ABI}=\widehat{EBI}\)(BI là tia phân giác của \(\widehat{ABE}\))

BI chung

Do đó: ΔABI=ΔEBI(c-g-c)

Suy ra: \(\widehat{BAI}=\widehat{BEI}\)(hai góc tương ứng)

mà \(\widehat{BAI}=90^0\)(gt)

nên \(\widehat{BEI}=90^0\)

2) Xét ΔAID vuông tại A và ΔEIC vuông tại E có

IA=IE(ΔBAI=ΔBEI)

\(\widehat{AID}=\widehat{EIC}\)(hai góc đối đỉnh)

Do đó: ΔAID=ΔEIC(Cạnh góc vuông-góc nhọn kề)

Suy ra: ID=IC(Hai cạnh tương ứng)

Xét ΔIDC có ID=IC(cmt)

nên ΔIDC cân tại I(Định nghĩa tam giác cân)

3) Ta có: ΔAID=ΔEIC(cmt)

nên AD=EC(Hai cạnh tương ứng)

Xét ΔBDC có 

\(\dfrac{BA}{AD}=\dfrac{BE}{EC}\)(Vì BA=BE; AD=EC)

nên AE//DC(Định lí Ta lét đảo)

4 tháng 3 2022

-Câu 1,2 của bài này na ná với nhau á, bạn tham khảo:

https://hoc24.vn/cau-hoi/cho-tam-giac-abc-can-tai-a-tren-canh-bc-lay-d-d-khong-trung-b-va-bdbc2-tren-tia-doi-cua-tia-cb-lay-e-sao-cho-bdce-cac-duong-vuong-goc-voi-bc-ke-tu-d-va-e-cat-duong-thang-ab-va-ac-lan-luot-tai.4784314158042

5 tháng 3 2022

c. -Kẻ tia phân giác của \(\widehat{BAC}\) cắt đường vuông góc với MN (tại I) tại F.

-Xét △ABF và △ACF:

\(AB=AC\) (△ABC cân tại A).

\(\widehat{BAF}=\widehat{CAF}\) (AF là tia phân giác của \(\widehat{BAC}\))

AF là cạnh chung.

\(\Rightarrow\)△ABF=△ACF (c-g-c).

\(\Rightarrow BF=CF\) (2 cạnh tương ứng).

\(\widehat{ABF}=\widehat{ACF}\) (2 góc tương ứng).

-Xét △MIF và △NIF:

\(MI=IN\left(cmt\right)\)

\(\widehat{MIF}=\widehat{NIF}=90^0\)

IF là cạnh chung.

\(\Rightarrow\)△MIF=△NIF (c-g-c).

\(\Rightarrow MF=NF\) (2 cạnh tương ứng).

-Xét △BMF và △CNF:

\(BM=NC\)(△MBD=△NCE)

\(MF=NF\left(cmt\right)\)

\(BF=CF\left(cmt\right)\)

\(\Rightarrow\)△BMF=△CNF (c-c-c).

\(\Rightarrow\widehat{MBF}=\widehat{NCF}\) (2 cạnh tương ứng).

Mà \(\widehat{MBF}=\widehat{MCF}\)(cmt)

\(\Rightarrow\widehat{NCF}=\widehat{MCF}\)

Mà \(\widehat{NCF}+\widehat{MCF}=180^0\) (kề bù)

\(\Rightarrow\widehat{NCF}=\widehat{MCF}=\dfrac{180^0}{2}=90^0\)

\(\Rightarrow\)AB⊥BF tại B.

\(\Rightarrow\) F là giao của đường vuông góc với AB tại B và tia phân giác của góc \(\widehat{BAC}\).

\(\Rightarrow\)F cố định.

-Vậy đường thẳng vuông góc với MN luôn đi qua điểm cố định khi D thay đổi trên đoạn BC.

27 tháng 5 2016

Mong các bạn giúp mình, mình cần gấp :)