K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xet ΔHBA vuông tại H và ΔABC vuông tại A có

góc B chung

=>ΔHBA đồng dạng với ΔABC

Xét ΔHAC vuông tại H và ΔABC vuông tại A có

góc C chung

=>ΔHAC đồng dạng vơi ΔABC

=>ΔHBA đồng dạng với ΔHAC

b: ΔHBA đồng dạng với ΔHAC

=>HB/HA=HA/HC

=>HA^2=HB*HC

c: AH=căn 9*16=12cm

AB=căn 9*25=15cm

=>AC=20cm

1 tháng 5 2023

a. Xét  Δ HBA và  Δ ABC

     \(\widehat{H}\) = \(\widehat{A}\) = 900 (gt)

      \(\widehat{B}\) chung

\(\Rightarrow\)  Δ HBA \(\sim\)  Δ ABC (g.g) (1)

 Xét  Δ HAC và  Δ ABC:

     \(\widehat{H}\) = \(\widehat{A}\) = 900 (gt)

       \(\widehat{C}\) chung

\(\Rightarrow\)  Δ HAC \(\sim\)  Δ ABC (g.g) (2)

Từ (1) và (2) \(\Rightarrow\) Δ HBA  \(\sim\)  Δ HAC 

b. Ta có:  Δ ABC vuông tại A

  Theo đ/lí Py - ta - go:

  BC2 = AB2 + AC2 

  BC2 = 62 + 82

\(\Rightarrow\) BC2 = 100

\(\Rightarrow\) BC = \(\sqrt{100}\) = 10 cm

Ta có: Δ HBA  \(\sim\)  Δ ABC: 

   \(\dfrac{HA}{AC}\) = \(\dfrac{BA}{BC}\) 

\(\Rightarrow\) \(\dfrac{HA}{8}\) = \(\dfrac{6}{10}\) 

\(\Rightarrow\) HA = 4,8 cm

 \(\dfrac{HB}{AB}\) = \(\dfrac{BA}{BC}\)  \(\Leftrightarrow\) \(\dfrac{HB}{6}\) = \(\dfrac{6}{10}\) 

\(\Rightarrow\) HB = 3,6 cm

Ta có:  Δ HAC \(\sim\)  Δ ABC

 \(\dfrac{HC}{AC}\) = \(\dfrac{AC}{BC}\) 

\(\Rightarrow\) \(\dfrac{HC}{8}\) = \(\dfrac{8}{10}\) 

\(\Rightarrow\) HC = 6,4cm

c. Ta có: Δ HBA \(\sim\)  Δ HAC

  \(\dfrac{HA}{HB}\) = \(\dfrac{HC}{HA}\) 

AH2 = HB . HC

Ta có : Δ HBA  \(\sim\)  Δ ABC 

    \(\dfrac{BA}{BC}\) = \(\dfrac{HB}{AB}\) 

\(\Rightarrow\) AB2 = HB . BC

 

 

1 tháng 5 2023

Giúp mik với. Cần gấp ạaaaaa

26 tháng 3 2023

a)

Xét ΔHBA vàΔABC,có:

∠AHB=∠CAB(=90)

∠ABC:chung

⇒ΔHBA ~ΔABC(g-g)

✳Xét ΔHAC vàΔABC,có:

∠CHA=∠CAB(=90)

∠ACB:chung

⇒ΔHAC ~ΔABC(g-g)

a: Xét ΔHBA vuôngtại H và ΔABC vuông tại A có

góc B chung

=>ΔHBA đồng dạng vơi ΔABC

Xét ΔHAC vuôngtại H và ΔABC vuông tại A có

góc C chung

=>ΔHAC đồng dạng với ΔABC

b: ΔHBA đồng dạng với ΔABC

=>BH/BA=BA/BC=HA/AC

=>BA^2=BH*BC và BA*AC=AH*CB

Xet ΔABC vuông tại A có AH là đường cao

nên AH^2=HB*HC

c: \(BC=\sqrt{3^2+4^2}=5\left(cm\right)\)

AH=3*4/5=2,4cm

HB=3^2/5=1,8cm

a: Xét ΔHBA vuông tại H và ΔABC vuông tại A có

góc B chung

=>ΔHBA đồng dạng với ΔABC

b: Xét ΔHBA vuông tại H và ΔHAC vuông tại H có

góc HBA=góc HAC

=>ΔHBA đồng dạng với ΔHAC

=>HB/HA=HA/HC

=>HA^2=HB*HC

14 tháng 4 2021

A B C 6 8 H E D

a, Xét tam giác ABC và tam giác HBA ta có : 

^BAC = ^AHB = 900

^B _ chung 

Vậy tam giác ABC ~ tam giác HBA ( g.g ) 

c, tam giác ABC vuông tại A, có đường cao AH 

Áp dụng định lí Pytago cho tam giác ABC vuông tại A

\(AB^2+AC^2=BC^2\Rightarrow BC^2=36+64=100\Rightarrow BC=10\)cm 

Ta có : \(\dfrac{AC}{AH}=\dfrac{BC}{AB}\)( cặp tỉ số đồng dạng ý a )

\(\Rightarrow\dfrac{8}{AH}=\dfrac{10}{6}\Rightarrow AH=\dfrac{48}{10}=\dfrac{24}{5}\)cm 

d, phải là cắt AC nhé, xem lại đề nhé bạn 

 

1: Xét ΔABC vuông tại A và ΔHBA vuông tại H có

góc B chung

Do đó: ΔABC\(\sim\)ΔHBA

2 Xét ΔABC vuông tại A có AH là đường cao

nên \(AH^2=HB\cdot HC\)

a: Xét ΔABC vuông tại A và ΔHBA vuông tại H có

góc B chung

=>ΔABC đồng dạng với ΔHBA

b: ΔABC vuông tại A có AH vuông góc BC

nên AH^2=HB*HC

c: \(AC=\sqrt{20^2-12^2}=16\left(cm\right)\)

AH=12*16/20=192/20=9,6cm