cho tam giác nhọn ABC nội tiếp đường tròn o, đường cao BD, CE cắt nhau tại H, AH cắt BC tại F, gọi M,N lần lượt là hình chiếu của B,C lên tiếp tuyến tại A của (o). Chứng minh 3 đường MD, NE, AH đồng quy
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Những câu hỏi liên quan
1 tháng 7 2023
a: góc BEC=góc BDC=90 độ
=>BEDC nội tiếp
b: ΔADB vuông tại D có DI là đường cao
nên BD^2=BI*BA
Gợi ý:
*MD cắt AH tại G.
Dễ dàng chứng minh các tam giác AMB, AFB, ADB nội tiếp đường tròn đường kính AB.
\(\Rightarrow\)5 điểm A,M,F,D,B nằm trên đường tròn.
Xét đường tròn \(\left(AMFDB\right)\) có: \(\widehat{ADM}=\widehat{ABM}\)
Xét (O) có: \(\widehat{BAM}=\widehat{ACB}\)
Ta có: \(\left\{{}\begin{matrix}\widehat{ABM}+\widehat{BAM}=90^0\\\widehat{ACB}+\widehat{FAC}=90^0\end{matrix}\right.\) mà \(\widehat{BAM}=\widehat{ACB}\)
\(\Rightarrow\widehat{ABM}=\widehat{FAC}\) \(\Rightarrow\widehat{ADM}=\widehat{FAC}\)
\(\Rightarrow\Delta AGD\) cân tại G. Từ đây có thể chứng minh dễ dàng G là trung điểm AH.
*NE cắt AH tại G'. Chứng minh tương tự G' là trung điểm AH.
\(\Rightarrow G\equiv G'\) nên MD,NE,AH đồng quy.