K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 3 2023

cảm ơn nhiều ạ

 

18 tháng 7 2021

mình nghĩ đề là tìm n nguyên để biểu thức nhận giá trị nguyên nhé

Ta có : \(B=\dfrac{2n+1}{n-2}=\dfrac{2\left(n-2\right)+5}{n-2}=2+\dfrac{5}{n-2}\)

Vì 2 nguyên nên \(\dfrac{5}{n-2}\)cũng nguyên 

\(\Rightarrow n-2\inƯ\left(5\right)=\left\{\pm1;\pm5\right\}\)

n - 21-15-5
n317-3

 

20 tháng 4 2021

b, \(A=\dfrac{2n+2}{2n-4}=\dfrac{2n-4+6}{2n-4}=\dfrac{6}{2n-4}\)

\(\Rightarrow2n-4\inƯ\left(6\right)=\left\{\pm1;\pm2;\pm3;\pm6\right\}\)

2n - 41-12-23-36-6
2n53627110-2
n5/2 ( ktm )3/2 ( ktm )317/2 ( ktm )1/2 ( ktm )5-1

 

18 tháng 4 2021

b, Để a nguyên hay \(2n+2⋮2n-4\Leftrightarrow2n-4+6⋮2n-4\)

\(\Rightarrow2n-4\inƯ\left(6\right)=\left\{\pm1;\pm2;\pm3;\pm6\right\}\)

2n - 41-12-23-36-6
2n53627110-2
n5/2 ( ktm )3/2 ( ktm )317/2 ( ktm )1/2 ( ktm )-1

 

Giải:

a) Để A=2n+2/2n-4 là phân số thì n ∉ {-1;1;2;3;5}

b) Để A là số nguyên thì 2n+2 ⋮ 2n-4

2n+2 ⋮ 2n-4

=>(2n-4)+6 ⋮ 2n-4

=>6 ⋮ 2n-4

=>2n-4 ∈ Ư(6)={-1;1;2;-2;3;-3;6;-6}

Vì 2n-4 là số chẵn nên 2n-4 ∈ {2;-2;6;-6}

Ta có bảng giá trị:

+)2n-4=2

      n=3

+)2n-4=-2

     n=1

+)2n-4=6

     n=5

+)2n-4=-6

     n=-1

Vậy n ∈ {-1;1;3;5}

Chúc bạn học tốt!

7 tháng 11 2022

Bạn Tham Khảo:

loading...

2 tháng 2 2021

\(a)\,\,A=\dfrac{13}{21} \Leftrightarrow \dfrac{2n+3}{4n+1}=\dfrac{13}{21} \\ \Leftrightarrow 21(2n+3)=13(4n+1)\\\Leftrightarrow 42n+63=52n+13\\\Leftrightarrow 42n-52n=13-63 \\\Leftrightarrow -10n=-50\\\Leftrightarrow n=(-50):(-10)\\\Leftrightarrow n=5\)

a: Để H là phân số thì n+1<>0

hay n<>-1

b: Để H là số nguyên thì \(2n+2+13⋮n+1\)

\(\Leftrightarrow n+1\in\left\{1;-1;13;-13\right\}\)

hay \(n\in\left\{0;-2;12;-14\right\}\)

3 tháng 2 2022

1. a) Gọi a là ƯCLN của 2n+5 và n+3.

- Ta có: (n+3)⋮a

=>(2n+6)⋮a

Mà (2n+5)⋮a nên [(2n+6)-(2n+5)]⋮a

=>1⋮a

=>a=1 hay a=-1.

- Vậy \(\dfrac{2n+5}{n+3}\) là phân số tối giản.

b) -Để phân số B có giá trị là số nguyên thì:

\(\left(2n+5\right)⋮\left(n+3\right)\)

=>\(\left(2n+6-1\right)⋮\left(n+3\right)\)

=>\(-1⋮\left(n+3\right)\).

=>\(n+3\inƯ\left(-1\right)\).

=>\(n+3=1\) hay \(n+3=-1\).

=>\(n=-2\) (loại) hay \(n=-4\) (loại).

- Vậy n∈∅.

3 tháng 2 2022

1. a) Gọi `(2n +5 ; n + 3 ) = d`

`=> {(2n+5 vdots d),(n+3 vdots d):}`

`=> {(2n+5 vdots d),(2(n+3) vdots d):}`

`=> {(2n+5 vdots d),(2n+6 vdots d):}`

Do đó `(2n+6) - (2n+5) vdots d`

`=> 1 vdots d`

`=> d = +-1`

Vậy `(2n+5)/(n+3)` là phân số tối giản

b) `B = (2n+5)/(n+3)` ( `n ne -3`)

`B = [2(n+3) -1]/(n+3)`

`B= [2(n+3)]/(n+3) - 1/(n+3)`

`B= 2 - 1/(n+3)`

Để B nguyên thì `1/(n+3)` có giá trị nguyên

`=> 1 vdots n+3`

`=> n+3 in Ư(1) = { 1 ; -1}`

+) Với `n+3 =1 => n = -2`(thỏa mãn điều kiện)

+) Với `n+ 3 = -1 => n= -4` (thỏa mãn điều kiện)

Vậy `n in { -2; -4}` thì `B` có giá trị nguyên

2. Gọi số học sinh giỏi kì `I` của lớp `6A` là `x` (` x in N **`)(học sinh)

Số học sinh còn lại của lớp `6A` là : `7/3 x` (học sinh)

Số học sinh giỏi của lớp `6A` cuối năm là: `x+4` (học sinh)

Cuối năm số học sinh còn lại của lớp `6A` là: `3/2 (x+4)`  (học sinh)

Vì số học sinh của lớp `6A` không đổi nên ta có :

`7/3x + x = 3/2 (x+4) + x+4`

`=> 10/3 x = 3/2 x + 6 + x + 4`

`=> 10/3 x  - 3/2 x -x = 10 `

`=> 5/6x = 10`

`=> x=12` (thỏa mãn điều kiện)

`=>` Số học sinh giỏi kì `I` của lớp `6A` là `12` học sinh

`=>` Số học sinh còn lại của lớp `6A` là : `12 . 7/3 =28` học sinh

`=>` Số học sinh của lớp `6A` là : `28 + 12 = 40` (học sinh)

Vậy lớp `6A` có `40` học sinh