K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 1 2016

\(A=x^{37}+y^{37}\)

\(x.y=1\)

\(x+y=4\)

\(x^2+y^2=\left(x+y\right)^2-2xy=14\)

\(x^3+y^3=\left(x+y\right)^3-3xy\left(x+y\right)=4^3-3.4=52\)

tính đến  \(x^{18}+y^{18}=m\) và \(x^{19}+y^{19}=n\)=> A chia 2053 dư 5 

 

18 tháng 1 2016

làm hộ mình đi, mình cần gấp

8 tháng 12 2017

có anh 18+ ko

Đặt : \(\hept{\begin{cases}a=\frac{3-\sqrt{37}}{2}\\b=\frac{3+\sqrt{37}}{2}\end{cases}\Rightarrow\hept{\begin{cases}a+b=3\\ab=7\end{cases}\Rightarrow}a,b}\)là nghiệm của PT : \(x^2-3x-7=0\)

Ta cần chứng minh : \(\left(\frac{3-\sqrt{37}}{2}\right)^n+\left(\frac{3+\sqrt{37}}{2}\right)^n=a^n+b^n\in Z\)( * )

Thật vậy :

 \(+n=1\)( * ) đúng

Giả sử * đúng vs n = k nghĩa là : \(a^k+b^k\in Z\)

Vậy ta cần CM : \(a^{k+1}+b^{k+1}\in Z\)

Do \(a^{k+1}+b^{k+1}=\left(a^k+b^k\right)\left(a+b\right)-ab\left(a^{k-1}+b^{k-1}\right)\)

Mà \(\hept{\begin{cases}a^k+b^k\in Z\\a^{k-1}+b^{k-1}\in Z\\ab\in Z\end{cases}}\Rightarrow a^{k+1}+b^{k+1}\in Z\)

Vậy * đúng với mọi n nguyên dương

2 tháng 8 2016

ĐỀ THIẾU số mũ 2010 kìa 
Đặt \(a=\frac{3-\sqrt{37}}{2},b=\frac{3+\sqrt{37}}{2}\)
Có \(\hept{\begin{cases}ab=-14\in Z\\a+b=3\in Z\end{cases}}\)
ta đi c/m bổ đề vs a+b nguyên, ab nguyên  thì a^n+b^n nguyên, 
c/m:Có \(a^n+b^n=\left(a+b\right)^n-\text{ C1n a^(n-1)b + C2n a^(n – 2)b^2 + … + Cnn – 1 ab^(n – 1) }\)
Do a+b nguyên , ab nguyên nên a^n+b^n nguyên
áp dụng bài toán trên với n=2010 => dpcm
với Cnn là tổ hợp châp n của n với n chyaj từ 1 đến n

12 tháng 8 2019

\(\left(5+2\sqrt{3}\right)\cdot\sqrt{37-20\sqrt{3}}\\ =\left(5+2\sqrt{3}\right)\cdot\sqrt{25-2\cdot10\sqrt{3}+12}\\ =\left(5+2\sqrt{3}\right)\cdot\sqrt{5^2-2\cdot5\cdot2\sqrt{3}+\left(2\sqrt{3}\right)^2}\\ =\left(5+2\sqrt{3}\right)\cdot\sqrt{\left(5-2\sqrt{3}\right)^2}\\ =\left(5+2\sqrt{3}\right)\left(5-2\sqrt{3}\right)\\ =5^2-\left(2\sqrt{3}\right)^2\\ =25-12=13\)

5 tháng 12 2016

B=5/9.2,(37)+0,(5).3,(62)-2 căn bậc hai (-2/3)^2

B=5/9.235/99+5/9.359/99-4/3

B=5/9.(235/99+359/99)-4/3

B=5/9.6-4/3

B=10/3-4/3

B=2

K MK NHA 

a: \(\Leftrightarrow4x+\dfrac{3}{4}=2\cdot\dfrac{2}{5}+0.01\cdot10=\dfrac{9}{10}\)

=>4x=3/20

hay x=3/80

b: \(\Leftrightarrow\left|x\right|=4+\dfrac{1}{8}-9=-\dfrac{39}{8}\)(vô lý)

c: 2x(x-2/3)=0

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x-\dfrac{2}{3}=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{2}{3}\end{matrix}\right.\)

d: \(\dfrac{37-x}{x+13}=\dfrac{3}{7}\)

=>259-7x=3x+39

=>-10x=-220

hay x=22

10 tháng 8 2019

Đặt \(\frac{5-\sqrt{21}}{2}=a;\frac{5+\sqrt{21}}{2}=b>0\) thì \(ab=1\)

*Chứng minh an là số tự nhiên.

Với n = 0, 1 nó đúng. Giả sử nó đúng đến n = k tức là ta có:

\(\hept{\begin{cases}a^{k-1}+b^{k-1}\inℤ\\a^k+b^k\inℤ\end{cases}}\). Ta cần chưng minh nó đúng với n =  k + 1 hay:

\(a^k.a+b^k.b=\left(a^k+b^k\right)\left(a+b\right)-ab\left(b^{k-1}+a^{k-1}\right)\)

\(=\left(a^k+b^k\right)\left(a+b\right)-\left(b^{k-1}+a^{k-1}\right)\inℤ\) (em tắt tí nhá, dựa vào giả thiết quy nạp thôi)

Vậy ta có đpcm. 

Còn lại em chưa nghĩ ra

10 tháng 8 2019

Cái bài ban nãy sửa a, b thành x và y nha! Không thôi nó trùng với đề bài. Tại quen tay nên em đánh luôn a, b

11 tháng 8 2017

e ) \(\left(5\sqrt{2}-2\sqrt{5}\right)\left(5\sqrt{2}+2\sqrt{5}\right)=\left(5\sqrt{2}\right)^2-\left(2\sqrt{5}\right)^2\)

\(=50-20=30\)

f ) \(\sqrt{27^2-23^2}=\sqrt{\left(27+23\right)\left(27-23\right)}\)

\(=\sqrt{50.4}=\sqrt{200}=10\sqrt{2}\)

g ) \(\sqrt{37^2-35^2}=\sqrt{\left(37+35\right)\left(37-35\right)}=\sqrt{72.2}=\sqrt{144}=12\)