Giải hộ mình với mai mình thi học sinh giỏi rùi!
Chứng minh rằng nếu một tứ giác có tâm đối xứng thì đó là hình bình hành. (đừng nhầm với hình thang cân nha vì hình thang cân không có tâm đối xứng đâu)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tứ giác: 0 trục, 0 tâm
Hình thang 0 trục, 0 tâm
Hình thang cân 1 trục 0 tâm
Hình bình hành 0 trục 1 tâm
Hình chữ nhật 2 trục 1 tâm
Hình thoi 2 trục 1 tâm
Hình vuông 4 trục 1 tâm
Tứ giác: 0 trục đối xứng, 0 tâm đối xứng
Hình thang: 0 trục đối xứng, 0 tâm đối xứng
Hình thang cân: 1 trục đối xứng, 0 tâm đối xứng
Hình bình hành: 0 trục đối xứng, 1 tâm đối xứng
Hình chữ nhật: 2 trục đối xứng, 1 tâm đối xứng
Hình thoi: 2 trục đối xứng, 1 tâm đối xứng
Hình vuông: 4 trục đối xứng, 1 tâm đối xứng
Tích đúng 5 sao cho mình nhé.
OK bạn
a: Xét tứ giác AMND có
AM//ND
AM=ND
Do đó: AMND là hình bình hành
b: Hình bình hành AMND có AM=AD
nên AMND là hình thoi
c: Xét tứ giác ANKQ có
D là trung điểm của NQ
D là trung điểm của AK
Do đó: ANKQ là hình bình hành
a: Xét tứ giác ABKH có
AB//HK
AH//BK
Do đó: ABKH là hình bình hành
mà \(\widehat{AHK}=90^0\)
nên ABKH là hình chữ nhật
Câu a bạn sửa lại để đi mình giải cho .
Sao lại chứng minh ABCD là hình bình hành
Bài làm:
a, hbh ABCD có: AB // CD và AB = CD
=> AM // DN và AM = DN
=> AMND là hbh mà AB = 2AD => 1/2AB = AD => AM = AD
=> AMND là hthoi
b, cmtt câu a ta có: MB // ND và MB = ND
=> MBND là hbh
To tưởng t7 ms thi mak