Rút gọn S=1011+10102+10103+10104+...+10101011
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án A
Phương pháp:
Biến đổi VT để xuất hiện log a 2019
Sử dụng công thức 1 3 + 2 3 + 3 3 + ... + n 3 = n 2 n + 1 2 4
Cách giải:
Ta có:
V T = 1 2 . log a 2019 + 2 2 log a 2019 + ... n 2 . log a n 2019
Vậy. = 1 3 . log a 2019 + 2 3 log a 2019 + ... + n 3 . log a 2019
= 1 3 + 2 3 + ... + n 3 . log a 2019
V T = 1010 2 .2019 2 . log a 2019
Có V T = V P
⇔ 1 3 + 2 3 + ... + n 3 log a 2019 = 1010 2 .2019 2 . log a 2019
⇔ n 2 n + 1 2 4 = 1010 2 .2019 2
⇔ n 2 + n 2 = 2020.2019 2
⇔ n 2 + n = 2020.2019 vì n 2 + n > 0 , ∀ n > 0
⇔ n = 2019 ∈ 0 ; + ∞ n = − 2020 ∉ 0 ; + ∞
Vậy n = 2019
Chú ý khi giải:
HS thường không biết áp dụng công thức 1 3 + 2 3 + 3 3 + ... + n 3 = n 2 n + 1 2 4 dẫn đến không tìm ra kết quả bài toán.
cộng 70 vào tử số ròi cộng 70 vào mẫu số rồi rmoiws rút gọn
\(S=1010+1010^2+1010^3+...+1010^{1011}\)
Suy ra \(1010.S=1010^2+1010^3+1010^4+....+1010^{1012}\)
Nên\(1010.S-S=1010^{1012}-1010\)hay\(1009.S=1010^{1012}-1010\)
Khi đó \(S=\frac{1010^{1012}-1010}{1009}\)
S=1011+1010^2+1010^3+...+1010^1011
S=1+1010+1010^2+1010^3+...+1010^1011
1010.S=1010+1010^2+1010^3+1010^4+...+1010^1012
1010 S - S=1010^1012-1
1009 S=1010^1012-1
S=(1010^1012-1):1009