Tìm số có 4 chữ số khác nhau:
abcd+bcd+cd+d=8098
Hỡi những người thông minh nhất Online Math hãy giúp mình trả lời câu hỏi này nhé
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Nhìn hình ta có: SAID = SBIC
Mà theo đề bài: SCID - SAIB = 193
=> ( SAID + SCID ) - ( SBIC + SAIB ) = 193
=> SADC - SABC = 193
Do AB/CD = 2/3 => SABC/SADC = 2/3
=> SABCD = SADC + SABC = 193 : ( 3 - 2 ) * ( 3 + 2 ) = 965
Đáp số: 965cm2
P/S; Đúng 100%, mình vừa tra Violympic.
Abcd+bcd+cd+d=8098( a,b,c khác 0 và a,b,c,d khác nhau)
Vì d x 4=….8 => d= 2 hoặc 7
Nếu d = 2 thì c x 3 = ….9 =>c=3
=> b x 2 = …0=> b= 5
Nếu b=5 => a + 1( nhớ ) = 8 => a=7
Vậy ta có số: 7532
Nếu d= 7 thì c x 3 + 2 (nhớ) = ….9 => c x 3 =…7 => c=9
b x 2 + 2 (nhớ)= …0 => b=4
a + 1(nhớ)= 8 =>a=7(loại vì a khác d)
Vậy tất cả các số thoả mãn đề bài là: 7532
Điều kiện: a, b, c khác 0
Ta có: bcd ≥ 123 nên abcd < 8098 - 123 < 8000, suy ra a < 8
bcd + cd + d ≤ 987 + 87 + 7 = 1081 nên abcd ≥ 8098 - 1081 = 7017, suy ra a = 7.
Khi đó 2 x bcd + cd + d =1098 hay 200 x b + 30 x c + 4 x d = 1098
Suy ra b < 1098 : 200 < 6 hay b ≤ 5.
Lại có 30 x c + 4 x d ≤ 30 x 9 + 4 x 8 = 302 nên 200 x b ≥ 1098 - 302 = 796, suy ra b ≥ 4.
Nếu b = 4 thì 30 x c + 4 x d = 298, suy ra c = 9 và d = 7. (loại vì d phải khác a)
Nếu b = 5 thì 30 x c + 4 x d = 98, suy ra c = 3 và d = 2.
Đáp số: abcd = 7532
1) Số đó là: 3789
2) Số đó là: 9873
3) 789
Chúc bạn may mắn nha!
Mình đã ra rồi
7532+532+32+2=8098
k cho mình nha!