K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 3 2023

Ta có ( x2 + 1 )( x + 1 ) = 3y

x2( x + 1 ) + x + 1 = 3y

x3 + x2 + x = 3y - 1

x( x2 + x + 1 ) = 3y - 1

Vì 3y ⋮ 3 nên 3y - 1 chia 3 dư 2

Khi đó x chia hết cho 3; x2 + x + 1 chia 3 dư 2 hoặc x chia 3 dư 2; x2 + x + 1 hia hết cho 3

Giả sử x chia hết cho 3 ⇒ x có dạng 3k ( k ϵ N )

Ta được 3k( 3k2 + 3k + 1 )

Vì 3k2 + 3k + 1 chia 3 dư 1 nên 3k( 3k2 + 3k + 1 ) chia 3 dư 1 ( trái với giả thiết ) → loại

Giả sử x chia 3 dư 2 ⇒ x có dạng 3k + 2 ( k ϵ N )

Ta được ( 3k + 2 )[( 3k + 2 )2 + 3k + 2 + 3 ]

( 3k + 2 )[ 9k2 + 12k + 3k + 5 ]

Vì 9k2 + 12k + 3k + 5 chia 3 dư 2 nên ( 3k + 2 )[ 9k2 + 12k + 3k + 5 ] chia 3 dư 1 ( trái với giả thiết ) → loại

Vậy không có x; y nào thỏa mãn ( x2 + 1 )( x + 1 ) = 3y

11 tháng 10 2021

e: \(\left\{{}\begin{matrix}\dfrac{1}{x}-\dfrac{1}{y}=1\\\dfrac{3}{x}+\dfrac{4}{y}=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{3}{x}-\dfrac{3}{y}=3\\\dfrac{3}{x}+\dfrac{4}{y}=5\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{-7}{y}=-2\\\dfrac{1}{x}-\dfrac{1}{y}=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{7}{2}\\\dfrac{1}{x}=1+\dfrac{2}{7}=\dfrac{9}{7}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{7}{2}\\x=\dfrac{7}{9}\end{matrix}\right.\)

a: \(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{x+1+1}{x+1}+\dfrac{2}{y-2}=6\\\dfrac{5}{x+1}-\dfrac{1}{y-2}=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1}{x+1}+\dfrac{2}{y-2}=5\\\dfrac{5}{x+1}-\dfrac{1}{y-2}=3\end{matrix}\right.\)

=>x+1=1 và y-2=1/2

=>x=0 và y=5/2

b: \(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{4}{x-2y}=\dfrac{1}{2}-\dfrac{1}{18}=\dfrac{9}{18}-\dfrac{1}{18}=\dfrac{8}{18}=\dfrac{4}{9}\\\dfrac{2}{2x-y}=\dfrac{1}{18}+\dfrac{1}{x-2y}\end{matrix}\right.\)

=>x-2y=9 và 2/2x-y=1/18+1/9=1/18+2/18=3/18=1/6

=>x-2y=9 và 2x-y=12

=>x=5; y=-2

c: \(\Leftrightarrow\left\{{}\begin{matrix}10\left|x-6\right|+15\left|y+1\right|=25\\10\left|x-6\right|-8\left|y+1\right|=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}23\left|y+1\right|=23\\\left|x-6\right|=1\end{matrix}\right.\)

=>|x-6|=1 và |y+1|=1

=>\(\left\{{}\begin{matrix}x\in\left\{7;5\right\}\\y\in\left\{0;-2\right\}\end{matrix}\right.\)

a) Ta có: \(\left\{{}\begin{matrix}\dfrac{5}{x-1}+\dfrac{1}{y-1}=10\\\dfrac{1}{x-1}-\dfrac{3}{y-1}=18\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{5}{x-1}+\dfrac{1}{y-1}=10\\\dfrac{5}{x-1}-\dfrac{15}{y-1}=90\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\dfrac{16}{y-1}=-80\\\dfrac{1}{x-1}-\dfrac{3}{y-1}=18\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}y-1=\dfrac{-1}{5}\\\dfrac{1}{x-1}=18+\dfrac{3}{y-1}=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{4}{5}\\x-1=\dfrac{1}{3}\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{4}{3}\\y=\dfrac{4}{5}\end{matrix}\right.\)

26 tháng 6 2023

Bài 1 :

Cách 1 : Dùng hằng đẳng thức : \(A^3-B^3=\left(A-B\right)\left(A^2+AB+B^2\right)\)

Áp dụng hằng đẳng thức trên ta suy ra được : đpcm.

Cách 2 :

\(VT=\left(x-1\right)\left(x^2+x+1\right)\)

\(=x^3+x^2+x-x^2-x-1\)

\(=x^3-1\left(VP\right)\)

suy ra : đpcm.

Bài 2 :

Hình như sai đề rồi á bạn . Đáp án đúng phải là \(x^4-y^4\) á cậu.

Cách 1 : Ta biến đổi vế phải thành vế trái .

Ta có : \(VP=x^4-y^4=\left(x^2+y^2\right)\left(x^2-y^2\right)\)

\(=\left(x^2+y^2\right)\left(x-y\right)\left(x+y\right)\)

\(=\left(x^3+x^2y+xy^2+y^3\right)\left(x-y\right)\left(VT\right)\)

Suy ra : đpcm.

Cách 2 : Bạn cũng có thể dùng hằng đẳng thức hoặc nhân bung vế trái ra á.

20 tháng 6 2015

1)5(x^2-1)+x(1-5x)= x-2

<=>5x2-5+x-5x2=x-2

<=>-5+x=x-2

<=>x-x=-2+5

<=>0x=3(vô lí)

vậy ko tìm được x

 

 

20 tháng 6 2015

daj quá bạn đăng từng baj thuj

11 tháng 10 2021

a: \(\left\{{}\begin{matrix}x+4y=-11\\5x-4y=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}6x=-10\\x+4y=-11\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{-5}{3}\\y=\dfrac{-11-x}{4}=\dfrac{-11+\dfrac{5}{3}}{4}=-\dfrac{7}{3}\end{matrix}\right.\)

b: \(\left\{{}\begin{matrix}2x-y=7\\3x+5y=-22\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}6x-3y=21\\6x+15y=-66\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}-18y=78\\2x-y=7\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=\dfrac{-13}{3}\\x=\dfrac{y+7}{2}=\dfrac{4}{3}\end{matrix}\right.\)

15 tháng 7 2018

a)  \(A=\left(x^3+3x^2+3x+1\right)+3\left(x^2+2x+1\right)y+3\left(x+1\right)y^2+y^3\)

\(=\left(x+1\right)^3+3\left(x+1\right)^2y+3\left(x+1\right)y^2+y^3\)

\(=\left(x+y+1\right)^3\)

\(=\left(9+1\right)^3=10^3=1000\)