cho tam giác abc vuông tại a,h thuộc ab,HEvuông góc với BCtại E ,tia EH cắt CA tạiDchứng minh CH vuông góc với BD
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
trong △ BDC có :
DE⊥BC=> DE là đường cao thứ nhất của △ BDC
BA⊥CD=> BA là đường cao thứ hai của △ BDC
Mà hai đường này cắt nhau tại H
=> H là trực tâm của △ BDC
=> CH là đường cao thứ ba của △ BDC
=>CH⊥BD
a: Đề sai rồi bạn
b: Xét ΔBAE vuông tại A và ΔBHE vuông tại H có
BE chung
\(\widehat{ABE}=\widehat{HBE}\)
Do đó: ΔBAE=ΔBHE
Suy ra: BA=BH
c: Ta có: \(\widehat{CAH}+\widehat{BAH}=90^0\)
\(\widehat{MAH}+\widehat{BHA}=90^0\)
mà \(\widehat{BAH}=\widehat{BHA}\)
nên \(\widehat{CAH}=\widehat{MAH}\)
hay AH là tia phân giác của góc MAC
Do trong \(\Delta BNC\) có BA và NM là đường cao
Mà NM cắt BA tại H
\(\Rightarrow H\) là trực tâm của \(\Delta BNC\)
Do đó \(CH\perp NB\)
a) Xét ΔABD và ΔEBD:
+) AB = BE
+) DB chung
+) ˆABD=ˆEBDABD^=EBD^ (Vì BD là phân giác)
Suy ra: ΔABD=ΔEBD (c.g.c)
- Suy ra DA = DE và DE ⊥⊥ BC
Tam giác EDC có: EC > CD – DE = CD – DA
Suy ra BC – BA > CD – DA
Có AH // DE ⇒ˆHAE=ˆAED⇒HAE^=AED^ (SLT)
Tam giác ADE cân ⇒ˆDAE=ˆAED⇒DAE^=AED^
Suy ra AE là phân giác của ˆHAC^
Kẻ EF ⊥ AC ⇒⇒ ΔAHE=ΔAFE (1)
Tam giác EFC vuông tại F ⇒ EC > EF (2)
Từ (1) và (2) ⇒ EC > HE.
P/s : hình thì tự vẽ :v
a: Xét ΔAHE vuông tại E và ΔAHI vuông tại I có
AH chung
\(\widehat{EAH}=\widehat{IAH}\)
Do đó: ΔAHE=ΔAHI
Xét ΔAHN có
AE là đường cao
AE là đường trung tuyến
Do đó: ΔAHN cân tại A
b: Ta có: HN=2HE
HM=2HI
mà HE=HI
nên HN=HM
Xét ΔAHM có
AI là đường cao
AI là đường trung tuyến
DO đó: ΔAHM cân tại A
=>AH=AM=AN
Ta có: AM=AN
HM=HN
Do đó: AH là đường trung trực của MN
Anh học đến lớp 7 rồi cơ, anh siêu thật ý, anh đã 13 tuổi rồi hả anh ?em chỉ đang học lớp 2 thôi ,thêm 1 tuổi là 8 tuổi rồi , sắp lên lớp 3 rồi anh ạ .Tên anh hiện ngay ở chỗ hình tròn á ,chứ em không biết nó là cái gì.Tên anh hay thật ,Lường Tuấn Anh.Em chúc anh mạnh khỏe , luôn chăm ngoan và luôn học giỏi,tính tình tốt đẹp anh nhé!Chúc anh thực hiện được ý kiến của em nhé!Chúc anh gặp nhiều điều may mắn anh nhé!