K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 4 2017

a) Xét tam giác ABD và tam giác AED có

AB=AE

BAD=DAE( vì AD là phân giác của BAC)

Cạnh AD chung

=> tam giác ABD= tam giác AED( c.g.c)

=>DB=DE

b) Có tam giác ABD= tam giác AED

=> ABD=AED

=>DBK=DEC( kề bù với 2 góc bằng nhau)

Xét tam giác BDK và tam giác EDC

BD=DE

BDK=EDC ( 2 góc đối đỉnh)

DBK=DEC

=> tam giác BDK= tam giác EDC ( g.c.g)

c) Tam giác BDK=tam giác EDC

=>DBK=DEC

Có DBK>C( DBK là góc ngoài tam giác ABC)

=>DEC>C

=>DC>DE

Mà DE=DE

=>DC>DB

4 tháng 4 2017

cam on

a: Xét ΔABD vuông tại A và ΔABC vuông tại A có

AB chung

AD=AC

Do đó: ΔABD=ΔABC

b: Ta có: ΔABD=ΔABC

nên BD=BC

hay ΔBDC cân tại B

7 tháng 4 2023

Thank youuuu những bạn giải quyết giúp mình bài tập :33

 

2:

a: Xét ΔABC có BM,CN là trung tuyến và G là giao của BM,CN

nên G là trọng tâm

=>BG=2GM và CG=2GN

=>BG=GE và CG=GF

=>G là trung điểm chung của BE và CF

=>BCEF là hình bình hành

=>BC=EF

b: Xét ΔFAE và ΔBGC có

FA=BG

AE=GC

FE=BC

=>ΔFAE=ΔBGC

a: Xét ΔIBA vuông tại I và ΔABD vuông tại A có

góc IBA chung

=>ΔIBA đồng dạng với ΔABD

b: Xét ΔBAD vuông tại A và ΔBHE vuông tại H có

góc ABD=góc HBE

=>ΔBAD đồng dạng với ΔBHE

=>BA/BH=BD/BE

=>BA*BE=BH*BD

d: góc BIA=góc BHA=90 độ

=>BHIA nội tiếp

góc IAH=góc IBH

góc IHA=góc ABI

mà góc IBH=góc ABI

nên góc IAH=góc IHA

=>IA=IH

a: Xét ΔAHF vuông tại F và ΔABD vuông tại D có 

\(\widehat{HAF}\) chung

Do đó: ΔAHF∼ΔABD

b: Xét ΔAEB vuông tại E và ΔAFC vuông tại F có 

\(\widehat{FAC}\) chung

Do đó: ΔAEB∼ΔAFC

Suy ra: AE/AF=AB/AC

hay \(AE\cdot AC=AB\cdot AF\)

c: Xét tứ giác BFHD có 

\(\widehat{BFH}+\widehat{BDH}=180^0\)

Do đó: BFHD là tứ giác nội tiếp

Suy ra: \(\widehat{ABE}=\widehat{ADF}\)

a: Xét ΔABC và ΔABD có

AB chung

BC=BD

AC=AD

Do đó: ΔABC=ΔABD

b: Xét ΔACD và ΔBCD có

CD chung

AC=BC

AD=BD

Do đó:ΔACD=ΔBCD

5 tháng 5 2023

a) Xét ΔHAD và ΔABD ta có:

\(\widehat{D}\) chung

\(\widehat{DAB}=\widehat{DHA}=90^0\)

⇒ΔHAD ∼ ΔABD (g.g)(1)

b) Xét ΔHBA và ΔABD ta có:

\(\widehat{B}\) chung

\(\widehat{AHB}=\widehat{DAB}=90^0\)

→ΔHBA ∼ ΔABD (g.g)(2)

Từ (1) và (2) →ΔHAD∼ΔHBA

\(\rightarrow\dfrac{AD}{DH}=\dfrac{HB}{AD}\\ \rightarrow AD.AD=DH.HB\\\Rightarrow AD^2=DH.HB\)

c) Xét ΔABD vuông tại A ta có:

\(BD^2=AB^2+AD^2\)

         \(=8^2+6^2\)

         \(=100\)

\(\Rightarrow BD=\sqrt{100}=10\left(cm\right)\)

Vì ΔΔHAD ∼ ΔABD (cmt)

\(\rightarrow\dfrac{AD}{DH}=\dfrac{AB}{AH}=\dfrac{BD}{AD}hay\dfrac{6}{DH}=\dfrac{8}{AH}=\dfrac{10}{6}=\dfrac{5}{3}\\ \Rightarrow DH=\dfrac{6.3}{5}=3,6\left(cm\right)\\ \Rightarrow AH=\dfrac{8.3}{5}=4,8\left(cm\right)\)

5 tháng 5 2023

Hình vẽ:

H 6cm D C A B 8cm

a: Xét ΔAMB và ΔABD có 

\(\widehat{AMB}=\widehat{ABD}\)

\(\widehat{BAM}\) chung

Do đó: ΔAMB∼ΔABD

b: Xét ΔMBD và ΔMAC có 

\(\widehat{MDB}=\widehat{MCA}\left(=\widehat{ABM}\right)\)

\(\widehat{BMD}=\widehat{AMC}\)

Do đó: ΔMBD∼ΔMAC

Suy ra: MB/MA=MD/MC

hay \(MB\cdot MC=MA\cdot MD\)

a: Xét ΔHAD vuông tại H và ΔABD vuông tại A có 

\(\widehat{HDA}\) chung

Do đó: ΔHAD\(\sim\)ΔABD

b: Xét ΔABD vuông tại A có AH là đường cao

nên \(AD^2=DH\cdot DB\)

24 tháng 1 2022

ý  c,d nữa bạn giải  chi tiet  giúp minh