Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABD và ΔAED có
AB=AE
góc BAD=góc EAD
AD chung
Do đó: ΔABD=ΔAED
=>DB=DE
b: Xét ΔDBF và ΔDEC có
góc DBF=góc DEC
DB=DE
góc BDF=góc EDC
Do đo: ΔDBF=ΔDEC
c:ΔDBF=ΔDEC
nên góc BDF=góc EDC
=>góc BDF+góc BDE=180 độ
=>E,D,F thẳng hàng
a)xet tam giac abd va tam giac aed co
ab=ae
ad la canh chunggoc bad = goc ead
=>tam giác abd = ead
b)gọi i là giao điểm của ad và be
xét tam giác abi và tam giác aei có :
ab=ae
ad là cạnh chung
goc bai = góc eai
=> tam giác abi= tâm giác aei
=>ib=ie =>ad là đường trung trực của be
cho mk 3 đi mk giải tiếp cho, bài nay mk vừa mới kiểm tra
mk giải tiếp nè
theo câu a,b=>góc dbf= góc dec (kề bù do góc abd= aed)
xét tam giác bfd và ecd có
góc dbf= góc dec
bd=ed
bdf=edc
=> tam giác dbf= tam giác ecd
k cho mk đi.mk hứa mk tl hết cho mà
a) Xét tam giác ADB và tam giác ADE , có :
AB=AE (gt)
AD là cạch chung
góc BAD = góc EAD (vì tia AD là phân giác của tam giác ABC)
=>Tam giác ADB = tam giác ADE (c.g.c)
b) Vì AB = AE (gt); BD = DE (vì tam giác ADB = Tam giác ADE chứng minh câu a)
=>AD là đường trung trực của BE ( tính chất đường trung trực của 1 đoạn thẳng)
c) Xét tam giác BFD và tam giác ECD, có :
Vì góc ABD + góc BFD = \(180^0\) (kề bù)
góc ADE + góc EDC = \(180^0\) (kề bù )
Mà góc ABD = góc AED ( vì tam giác ADB = tam giác ADE chứng minh câu a)
=> Góc FBD = góc CED
BD = ED (vì tam giác ADB = tam giác ADE)
Góc BDF = góc EDC (đối đỉnh)
=> Tam giác BFD = tam giác ECD (g.c.g)
d) câu này bạn biết rồi
a,
xét tam giác ABD và tam giác ADE có
AB=AE (gt)
GÓC A1= GÓC A2 ( ad là tia phân giác)
ad chung
=> tam giác abd = tam giác ade (c.g.c)
b, xét tam giác BAI và tam giác EAI có:
AB=AE(gt)
A1=A2 (ad là tia phân giác)
AI chung
=> tam giác BAI = tam giác EAI (c.g.c)
=> BI=IE (2 cạnh t,ứng)
vì BI=BE ( cmt) => AI là đường trung trực của BE
P/s: 2 phần kia bạn tự làm nhé ak cái I là BE cắt AD tại I
a: Xét ΔABD và ΔAED có
AB=AE
góc BAD=góc EAD
AD chung
=>ΔABD=ΔAED
b: ΔABD=ΔAED
=>góc AED=góc ABD=90 độ
c: Xét ΔAEF vuông tại A và ΔABC vuông tại B có
AE=AB
góc EAF chung
=>ΔAEF=ΔABC
=>AF=AC
d: DB=DE
mà DE<DC
nên DB<DC
hình tự vẽ
a)Vì AD là tpg của ^BAC
=>^BAD = ^CAD = ^BAC/2
Xét tam giác ABD và tam giác AED có:
AD:cạnh chung
^BAD=^CAD(cmt)
AB=AE(gt)
=>tam giác ABD=tam giác AED (c.g.c)
=>BD=BE (cặp cạnh t.ư)
b)Vì tam giác ABD=tam giác AED(cmt)
=>^ABD=^AED (cặp góc t.ư)
Ta có:^ABD+^KBD=1800 (kề bù)
=>^KBD=1800-^ABD (1)
^AED+^CED=1800 (kề bù)
=>^CED=1800-^AED(2)
Từ (1);(2);có ^ABD=^AED(cmt)
=>^KBD=^CED
Xét tam giác DBK và tam giác DEC có:
BD=BE(cmt
^KBD=^CED(cmt)
^BDK=^EDC (2 góc đđ)
=>tam giác DBK=tam giác DEC (g.c.g)
a: Xét ΔABD và ΔAED có
AB=AE
\(\widehat{BAD}=\widehat{EAD}\)
AD chung
Do đó: ΔABD=ΔAED
Suy ra: BD=ED
b: Xét ΔDBK và ΔDEC có
\(\widehat{DBK}=\widehat{DEC}\)
BD=ED
\(\widehat{BDK}=\widehat{EDC}\)
Do đó: ΔDBK=ΔDEC
c: Ta có: ΔDBK=ΔDEC
nên BK=EC
Ta có: AB+BK=AK
AE+EC=AC
mà AB=AE
và BK=EC
nên AK=AC
hay ΔAKC cân tại A
a) Xét tam giác ABD và tam giác AED có
AB=AE
BAD=DAE( vì AD là phân giác của BAC)
Cạnh AD chung
=> tam giác ABD= tam giác AED( c.g.c)
=>DB=DE
b) Có tam giác ABD= tam giác AED
=> ABD=AED
=>DBK=DEC( kề bù với 2 góc bằng nhau)
Xét tam giác BDK và tam giác EDC
BD=DE
BDK=EDC ( 2 góc đối đỉnh)
DBK=DEC
=> tam giác BDK= tam giác EDC ( g.c.g)
c) Tam giác BDK=tam giác EDC
=>DBK=DEC
Có DBK>C( DBK là góc ngoài tam giác ABC)
=>DEC>C
=>DC>DE
Mà DE=DE
=>DC>DB
cam on