K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
4 tháng 3 2023

Lời giải:
Gọi tích trên là $A$. Ta có:

$A=\frac{1}{2}\times \frac{2}{3}\times \frac{3}{4}\times \frac{4}{5}\times \frac{5}{6}$

$=\frac{1\times 2\times 3\times 4\times 5}{2\times 3\times 4\times 5\times 6}=\frac{1}{6}$

Giải:

1) (-8/13:3/7+-5/13:3/7).(-4)3.|-3|/7

=[7/3.(-8/13+-5/13)].-192/7

=[7/3.(-1)].-192/7

=-7/3.-192/7

=64

2) 75%-(5/2+5/3)+(-1/2)2

=3/4-25/6+1/4

=(3/4+1/4)-25/6

=1-25/6

=-19/6

Chúc bạn học tốt!

30 tháng 4 2021

1) \(\left(\dfrac{-8}{13}:\dfrac{3}{7}+\dfrac{-5}{13}:\dfrac{3}{7}\right).\dfrac{\left(-4\right).|-3|}{7}\)

  = \(\left[\left(\dfrac{-8}{13}+\dfrac{-5}{13}\right):\dfrac{3}{7}\right].\dfrac{-64.3}{7}\)

  = \(\left[-1:\dfrac{3}{7}\right].\dfrac{-192}{7}\)

  = \(\dfrac{-7}{3}.\dfrac{-192}{7}\)

  =       \(64\)

 

2)  \(75\%-\left(\dfrac{5}{2}+\dfrac{5}{3}\right)+\left(-\dfrac{1}{2}\right)^2\)

  = \(\dfrac{3}{4}-\dfrac{25}{6}+\dfrac{1}{4}\)

  = \(\left(\dfrac{3}{4}+\dfrac{1}{4}\right)-\dfrac{25}{6}\)

  =          \(1-\dfrac{25}{6}\)

  =            \(\dfrac{-19}{6}\)

Chúc bạn học tốt !hihi

3 tháng 4 2017

1) . \(\dfrac{1}{2}-\left|\dfrac{1}{5}-\dfrac{1}{4}\right|+\left(-\dfrac{1}{3}\right)^2\\ =\dfrac{1}{2}-\left(\dfrac{1}{4}-\dfrac{1}{5}\right)+\dfrac{1}{9}\\ =\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{5}+\dfrac{1}{9}\)

\(=\dfrac{61}{180}\)

2) . \(\dfrac{1}{3}+\dfrac{4}{3}\left(\dfrac{1}{2}-\dfrac{1}{3}\right)+\left(\dfrac{-2}{3}\right)^2\\ =\dfrac{1}{3}+\dfrac{4}{3}\cdot\dfrac{1}{6}+\dfrac{4}{9}\\ =\dfrac{1}{3}+\dfrac{2}{9}+\dfrac{4}{9}\\ =1\)

23 tháng 4 2022

bn đăng bên toán nhé

câu c) mang tính mua vui hay gì hả bn

mếu thật thì x=0,x=số nào cx đc(câu trả lời này mang tính mua vui thôi nhé)

1 tháng 12 2021

\(a,\left(12x^2y^2-6xy^2\right):3xy+2y=6xy^2\left(2x-1\right):3xy+2y=2y\left(2x-1\right)+2y=4xy-2y+2y=4xy\)

\(b,\dfrac{4}{x+1} + \dfrac{8}{\left(x+1\right)\left(x-1\right)}\)

\(=\dfrac{4\left(x-1\right)+8}{\left(x+1\right)\left(x-1\right)}\\ =\dfrac{4x-4+8}{\left(x+1\right)\left(x-1\right)}\\ =\dfrac{4x+4}{\left(x+1\right)\left(x-1\right)}\\ =\dfrac{4\left(x+1\right)}{\left(x+1\right)\left(x-1\right)}=\dfrac{4}{x-1}\)

\(c,\dfrac{1 }{x+1}- \dfrac{1}{x-1} +\dfrac{ 2x}{x^2-1} \)

\(=\dfrac{x-1}{\left(x+1\right)\left(x-1\right)}-\dfrac{x+1}{\left(x+1\right)\left(x-1\right)}+\dfrac{2x}{\left(x+1\right)\left(x-1\right)}\)

\(=\dfrac{x-1-x-1+2x}{\left(x+1\right)\left(x-1\right)}\)

\(=\dfrac{2x-2}{\left(x+1\right)\left(x-1\right)}\)

\(=\dfrac{2\left(x-1\right)}{\left(x+1\right)\left(x-1\right)}\)

\(=\dfrac{2}{x+1}\)

 

1 tháng 12 2021

\(a,=4xy-2y+2y=4xy\\ b,\dfrac{4}{x+1}+\dfrac{8}{\left(x+1\right)\left(x-1\right)}=\dfrac{4x-4+8}{\left(x+1\right)\left(x-1\right)}\\ =\dfrac{4x+4}{\left(x+1\right)\left(x-1\right)}=\dfrac{4\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}=\dfrac{4}{x-1}\\ c,\dfrac{1}{x+1}-\dfrac{1}{x-1}+\dfrac{2x}{x^2-1}=\dfrac{x-1-x-1+2x}{\left(x-1\right)\left(x+1\right)}\\ =\dfrac{2x-2}{\left(x-1\right)\left(x+1\right)}=\dfrac{2\left(x-1\right)}{\left(x-1\right)\left(x+1\right)}=\dfrac{2}{x+1}\)

15 tháng 4 2023

\(A=\dfrac{1+\left(1+2\right)+\left(1+2+3\right)+...+\left(1+2+3+...+2020\right)}{1\times2020+2\times2019+3\times2018+...+2020\times1}\)

Ta có: \(1+\left(1+2\right)+\left(1+2+3\right)+...+\left(1+2+3+...+2020\right)\)

\(=\left(1+1+1+...+1\right)+\left(2+2+2+...+2\right)+\left(3+3+3+...+3\right)+...+\left(2019+2019\right)+2020\)

Trong đó có: 2020 số 1, 2019 số 2, 2018 số 3,..., 2 số 2019, 1 số 2020

Vậy: \(\left(1+1+...+1\right)+\left(2+2+...+2\right)+\left(3+3+...+3\right)+...+2020\)

\(=1\times2020+2\times2019+3\times2018+...+2020\times1\)

\(\Rightarrow A=\dfrac{1+\left(1+2\right)+\left(1+2+3\right)+...+\left(1+2+3+...+2020\right)}{1\times2020+2\times2019+3\times2018+...+2020\times1}\)

\(A=\dfrac{1\times2020+2\times2019+3\times2018+...+2020\times1}{1\times2020+2\times2019+3\times2018+...+2020\times1}=1\)

5 tháng 6 2023

b) (4√x + 4)/(x + 2√x + 5) ≥ 1

⇔ (4√x + 4)/(x + 2√x + 5) - 1 ≤ 0

Do x ≥ 0 ⇒ x + 2√x + 5 > 0

⇒ (4√x + 4)/(x + 2√x + 5) - 1 ≤ 0

⇔ (4√x + 4) - (x + 2√x + 5) ≤ 0

⇔ 4√x + 4 - x - 2√x - 5 ≤ 0

⇔ -x + 2√x - 1 ≤ 0

⇔ -(x - 2√x + 1) ≤ 0

⇔ -(√x - 1)² ≤ 0 (luôn đúng)

Vậy (4√x + 4)/(x + 2√x + 5) ≤ 1 với mọi x ≥ 0

a: \(P=\dfrac{x+8\sqrt{x}+8-x-4\sqrt{x}-4}{\sqrt{x}\left(\sqrt{x}+2\right)}:\dfrac{x+\sqrt{x}+3+\sqrt{x}+2}{\sqrt{x}\left(\sqrt{x}+2\right)}\)

\(=\dfrac{4\left(\sqrt{x}+1\right)}{x+2\sqrt{x}+5}\)

b: 4(căn x+1)>=4

x+2căn x+5>=5

=>P<=4/5<1

3 tháng 4 2017

4) | x-1/3| -1/3=1/3