Tính bằng cách thuận tiện nhất:
\(\left(1-\dfrac{1}{2}\right)\text{× }\left(1-\dfrac{1}{3}\right)\text{ × }\left(1-\dfrac{1}{4}\right)\text{ × }\left(1-\dfrac{1}{5}\right)\text{}\text{}\text{× }\left(1-\dfrac{1}{6}\right)\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giải:
1) (-8/13:3/7+-5/13:3/7).(-4)3.|-3|/7
=[7/3.(-8/13+-5/13)].-192/7
=[7/3.(-1)].-192/7
=-7/3.-192/7
=64
2) 75%-(5/2+5/3)+(-1/2)2
=3/4-25/6+1/4
=(3/4+1/4)-25/6
=1-25/6
=-19/6
Chúc bạn học tốt!
1) \(\left(\dfrac{-8}{13}:\dfrac{3}{7}+\dfrac{-5}{13}:\dfrac{3}{7}\right).\dfrac{\left(-4\right).|-3|}{7}\)
= \(\left[\left(\dfrac{-8}{13}+\dfrac{-5}{13}\right):\dfrac{3}{7}\right].\dfrac{-64.3}{7}\)
= \(\left[-1:\dfrac{3}{7}\right].\dfrac{-192}{7}\)
= \(\dfrac{-7}{3}.\dfrac{-192}{7}\)
= \(64\)
2) \(75\%-\left(\dfrac{5}{2}+\dfrac{5}{3}\right)+\left(-\dfrac{1}{2}\right)^2\)
= \(\dfrac{3}{4}-\dfrac{25}{6}+\dfrac{1}{4}\)
= \(\left(\dfrac{3}{4}+\dfrac{1}{4}\right)-\dfrac{25}{6}\)
= \(1-\dfrac{25}{6}\)
= \(\dfrac{-19}{6}\)
Chúc bạn học tốt !
1) . \(\dfrac{1}{2}-\left|\dfrac{1}{5}-\dfrac{1}{4}\right|+\left(-\dfrac{1}{3}\right)^2\\ =\dfrac{1}{2}-\left(\dfrac{1}{4}-\dfrac{1}{5}\right)+\dfrac{1}{9}\\ =\dfrac{1}{2}-\dfrac{1}{4}+\dfrac{1}{5}+\dfrac{1}{9}\)
\(=\dfrac{61}{180}\)
2) . \(\dfrac{1}{3}+\dfrac{4}{3}\left(\dfrac{1}{2}-\dfrac{1}{3}\right)+\left(\dfrac{-2}{3}\right)^2\\ =\dfrac{1}{3}+\dfrac{4}{3}\cdot\dfrac{1}{6}+\dfrac{4}{9}\\ =\dfrac{1}{3}+\dfrac{2}{9}+\dfrac{4}{9}\\ =1\)
câu c) mang tính mua vui hay gì hả bn
mếu thật thì x=0,x=số nào cx đc(câu trả lời này mang tính mua vui thôi nhé)
\(a,\left(12x^2y^2-6xy^2\right):3xy+2y=6xy^2\left(2x-1\right):3xy+2y=2y\left(2x-1\right)+2y=4xy-2y+2y=4xy\)
\(b,\dfrac{4}{x+1} + \dfrac{8}{\left(x+1\right)\left(x-1\right)}\)
\(=\dfrac{4\left(x-1\right)+8}{\left(x+1\right)\left(x-1\right)}\\ =\dfrac{4x-4+8}{\left(x+1\right)\left(x-1\right)}\\ =\dfrac{4x+4}{\left(x+1\right)\left(x-1\right)}\\ =\dfrac{4\left(x+1\right)}{\left(x+1\right)\left(x-1\right)}=\dfrac{4}{x-1}\)
\(c,\dfrac{1 }{x+1}- \dfrac{1}{x-1} +\dfrac{ 2x}{x^2-1} \)
\(=\dfrac{x-1}{\left(x+1\right)\left(x-1\right)}-\dfrac{x+1}{\left(x+1\right)\left(x-1\right)}+\dfrac{2x}{\left(x+1\right)\left(x-1\right)}\)
\(=\dfrac{x-1-x-1+2x}{\left(x+1\right)\left(x-1\right)}\)
\(=\dfrac{2x-2}{\left(x+1\right)\left(x-1\right)}\)
\(=\dfrac{2\left(x-1\right)}{\left(x+1\right)\left(x-1\right)}\)
\(=\dfrac{2}{x+1}\)
\(a,=4xy-2y+2y=4xy\\ b,\dfrac{4}{x+1}+\dfrac{8}{\left(x+1\right)\left(x-1\right)}=\dfrac{4x-4+8}{\left(x+1\right)\left(x-1\right)}\\ =\dfrac{4x+4}{\left(x+1\right)\left(x-1\right)}=\dfrac{4\left(x+1\right)}{\left(x-1\right)\left(x+1\right)}=\dfrac{4}{x-1}\\ c,\dfrac{1}{x+1}-\dfrac{1}{x-1}+\dfrac{2x}{x^2-1}=\dfrac{x-1-x-1+2x}{\left(x-1\right)\left(x+1\right)}\\ =\dfrac{2x-2}{\left(x-1\right)\left(x+1\right)}=\dfrac{2\left(x-1\right)}{\left(x-1\right)\left(x+1\right)}=\dfrac{2}{x+1}\)
\(A=\dfrac{1+\left(1+2\right)+\left(1+2+3\right)+...+\left(1+2+3+...+2020\right)}{1\times2020+2\times2019+3\times2018+...+2020\times1}\)
Ta có: \(1+\left(1+2\right)+\left(1+2+3\right)+...+\left(1+2+3+...+2020\right)\)
\(=\left(1+1+1+...+1\right)+\left(2+2+2+...+2\right)+\left(3+3+3+...+3\right)+...+\left(2019+2019\right)+2020\)
Trong đó có: 2020 số 1, 2019 số 2, 2018 số 3,..., 2 số 2019, 1 số 2020
Vậy: \(\left(1+1+...+1\right)+\left(2+2+...+2\right)+\left(3+3+...+3\right)+...+2020\)
\(=1\times2020+2\times2019+3\times2018+...+2020\times1\)
\(\Rightarrow A=\dfrac{1+\left(1+2\right)+\left(1+2+3\right)+...+\left(1+2+3+...+2020\right)}{1\times2020+2\times2019+3\times2018+...+2020\times1}\)
\(A=\dfrac{1\times2020+2\times2019+3\times2018+...+2020\times1}{1\times2020+2\times2019+3\times2018+...+2020\times1}=1\)
b) (4√x + 4)/(x + 2√x + 5) ≥ 1
⇔ (4√x + 4)/(x + 2√x + 5) - 1 ≤ 0
Do x ≥ 0 ⇒ x + 2√x + 5 > 0
⇒ (4√x + 4)/(x + 2√x + 5) - 1 ≤ 0
⇔ (4√x + 4) - (x + 2√x + 5) ≤ 0
⇔ 4√x + 4 - x - 2√x - 5 ≤ 0
⇔ -x + 2√x - 1 ≤ 0
⇔ -(x - 2√x + 1) ≤ 0
⇔ -(√x - 1)² ≤ 0 (luôn đúng)
Vậy (4√x + 4)/(x + 2√x + 5) ≤ 1 với mọi x ≥ 0
a: \(P=\dfrac{x+8\sqrt{x}+8-x-4\sqrt{x}-4}{\sqrt{x}\left(\sqrt{x}+2\right)}:\dfrac{x+\sqrt{x}+3+\sqrt{x}+2}{\sqrt{x}\left(\sqrt{x}+2\right)}\)
\(=\dfrac{4\left(\sqrt{x}+1\right)}{x+2\sqrt{x}+5}\)
b: 4(căn x+1)>=4
x+2căn x+5>=5
=>P<=4/5<1
Lời giải:
Gọi tích trên là $A$. Ta có:
$A=\frac{1}{2}\times \frac{2}{3}\times \frac{3}{4}\times \frac{4}{5}\times \frac{5}{6}$
$=\frac{1\times 2\times 3\times 4\times 5}{2\times 3\times 4\times 5\times 6}=\frac{1}{6}$