1. chứng tỏ rằng : 3abcabc - 605 \(⋮\)11 ( a,b,c là chữ số khác 0 )
2. tìm n là số tự nhiên sao cho :
n + S(n) = 2014
lưu ý : S(n) là tổng các chữ số của n
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu c bạn tham khảo tại đây:
Câu hỏi của Edogawa Conan - Toán lớp 6 - Học toán với OnlineMath
P > 3 => P = 3k + 1 hoặc P = 3k + 2 (k thuộc N) (vì P là số nguyên tố)
+) P = 3k + 1 => P + 8 = 3k + 9 chia hết cho 3 => P + 8 là hợp số
+) P = 3k + 2 => P + 4 = 3k + 6 chia hết cho 3 => P + 4 là hợp số (loại)
Vậy P + 8 là hợp số
Vì n chia hết cho 9 nên S(n) chia hết cho 9 => S(A) chia hết cho 9 => S(B) chia hết cho 9 => S(C) chia hết cho 9.
Vì n là số có 2004 chữ số nên tổng của chúng không bằng 0 => S(C) chỉ có thể bằng 9
Dễ thấy số cần tìm là số có bốn chữ số.
Đặt số cần tìm là \(\overline{abcd}\).
\(a=1\)hoặc \(a=2\).
Với \(a=1\):
\(\overline{1bcd}+1+b+c+d=1001+\overline{bcd}+b+c+d=2015\)
\(\Leftrightarrow\overline{bcd}+b+c+d=1014\)
\(\Leftrightarrow\overline{bcd}=1014-b-c-d\ge1014-9-9-9=987\)
Suy ra \(b=9\).
\(\overline{9cd}=1014-9-c-d\Leftrightarrow\overline{cd}=105-c-d\ge105-9-9=87\)
suy ra \(c=8\)hoặc \(c=9\).
Từ đây suy ra \(c=9,d=3\)thỏa mãn.
Ta có số: \(1993\).
Với \(a=2\):
\(\overline{2bcd}+2+b+c+d=2015\)
Dễ thấy \(b=0\).
suy ra \(\overline{cd}+2000+2+0+c+d=2015\Leftrightarrow\overline{cd}+c+d=13\)
suy ra \(c=d=1\).
Ta có số: \(2011\).
Vậy ta có hai số thỏa mãn ycbt là \(1993,2011\).
người mang cho em tỗn thương , em vẫn yêu vẫn ko than vãn 1 lời
Câu 1 :
Ta có :
abcabc = abc . 7 . 11 . 13
=> abc . 7 . 11 . 13 chia hết cho 11
=> abcabc chia hết cho 11
=> 3abcabc chia hết cho 11
Mà 3abcabc chia hết cho 11
605 chia hết cho 11
=> 3abcabc - 605 chia hết cho 11
n < 2014 =>\(S_n\le\)1 + 9 + 9 + 9 = 28\(\Rightarrow n\ge\)2014 - 28 = 1986.Đặt n = abcd.Ta có bảng sau :
2013 + 2d = 2014
Vậy n = 1988 ; 2006