Bài 4: ( 3 điểm) Cho đường tròn (O). Từ một điểm M nằm ngoài đường tròn kẻ tiếp tuyến MA và cát tuyến MBC với (O) ( A là tiếp điểm, MB< MC), B và A năm cùng phía đối với MO). Kẻ đường kính AD của đường tròn (O),MO cắt CD tại E. Gọi H là hình chiếu của A trên MO.
1/ Chứng minh tứ giác AHEC nội tiếp
2/ Chứng minh MBA đồng dạng MAC và MB.MC= MH.MO
3/ Chứng minh BDC =1/2 BHC và AE//BD
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
3: Xét (O) có
MA,MB là tiếp tuyến
=>MA=MB
mà OA=OB
nên OM là trung trực của AB
=>OM vuông góc AB tại H
=>MH*MO=MA^2
Xét ΔMAB và ΔMCA có
góc MAB=góc MCA
góc AMB chung
=>ΔMAB đồng dạng với ΔMCA
=>MA/MC=MB/MA
=>MA^2=MB*MC
=>MH*MO=MB*MC
=>MH/MB=MC/MO
=>MH/MC=MB/MO
=>ΔMHB đồng dạng với ΔMCO
=>góc MHB=góc MCO
=>góc OHB+góc OCB=180 độ
=>OHBC nội tiếp
=>góc BHC=góc BOC
=>góc BHC=2*góc BDC(ĐPCM)
Xét đường tròn tâm O ta có :
góc MAB = góc MCA = 1/2 sđ cung AB
Xét tam giác MAB và tam giác MCA có :
góc MAB = góc MCA
góc AMC Chung
=> \(\Delta MAB\sim\Delta MCA\)
=.> \(\dfrac{MA}{MC}=\dfrac{MB}{MA}\)
=> MA2=MC.MB
<=> 62=12.MB
=>MB =3cm
vậy MB = 3 cm
a: Xét (O) có
MA,MB là tiếp tuyến
=>MA=MB
mà OA=OB
nên OM là trung trực của AB
=>I là trung điểm của AB
Xét ΔMAK và ΔMCA có
góc MAK=góc MCA
góc AMK chung
=>ΔMAK đồng dạng với ΔMCA
=>MA/MC=MK/MA
=>MA^2=MC*MK=MI*MO
=>MC/MO=MI/MK
=>MC/MI=MO/MK
=>ΔMCO đồng dạng với ΔMIK
1: Xét (O) co
ΔACD nội tiếp
AD là đường kính
=>ΔACD vuông tại C
Xét tứ giác AHEC có
góc AHE+góc ACE=180 độ
=>AHEC là tứ giác nội tiếp
2: Xét ΔMBA và ΔMAC có
góc MBA=góc MAC
góc BMA chung
=>ΔMBA đồng dạng với ΔMAC
=>MB/MA=MA/MC
=>MA^2=MB*MC
=>MB*MC=MH*MO