K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét (O) có

MA,MB là tiếp tuyến

=>MA=MB

mà OA=OB

nên OM là trung trực của AB

=>I là trung điểm của AB

Xét ΔMAK và ΔMCA có

góc MAK=góc MCA

góc AMK chung

=>ΔMAK đồng dạng với ΔMCA

=>MA/MC=MK/MA

=>MA^2=MC*MK=MI*MO

=>MC/MO=MI/MK

=>MC/MI=MO/MK

=>ΔMCO đồng dạng với ΔMIK

1 tháng 5 2020

a.Vì MA,MB là tiếp tuyến của (O)

→ˆMAO=ˆMBO=90o→MAO^=MBO^=90o

→M,A,O,B→M,A,O,B thuộc đường tròn đường kình OM

b.Vì MA,MBMA,MB là tiếp tuyến của (O)→MO⊥AB=I→MO⊥AB=I

→OA2=OI.OM→OA2=OI.OM

Vì OF⊥CM=EOF⊥CM=E

→ˆFAC=ˆFEC=90o→◊AFCE,◊MAEO→FAC^=FEC^=90o→◊AFCE,◊MAEO nội tiếp

→M,A,E,O,B→M,A,E,O,B cùng thuộc một đường tròn

→ˆFCA=ˆFEA=ˆFBO→FCA^=FEA^=FBO^

→FC→FC là tiếp tuyến của (O)

a: OH*OM=OA^2=R^2

b: ΔOCD cân tại O

mà OI là đường trung tuyến

nên OI vuông góc với CD

Xét tứ giác OIAM có

góc OIM=góc OAM=90 độ

nên OIAM là tứ giác nội tiếp

c: Xét ΔOHK vuông tại H và ΔOIM vuông tại I có

góc HOK chung

Do đo: ΔOHK đồng dạng với ΔOIM

=>OH/OI=OK/OM

=>OI*OK=OH*OM=R^2=OC^2

mà CI vuông góc với OK

nên ΔOCK vuông tại C

=>KC là tiếp tuyến của (O)

a: Xét ΔEBC và ΔEAB có

góc EBC=góc EAB

góc BEC chung

=>ΔEBC đồng dạng với ΔEAB

=>EB/EA=EC/EB

=>EB^2=EA*EC

b: góc MAK+góc OAK=90 độ

góc BAK+góc OKA=90 độ

mà góc OAK=góc OKA

nên góc MAK=góc BAK

=>AK là phân giác của góc MAB(1)

Xét (O) có

MA,MB là tiếp tuyến

=>MO là phân giác của góc AMB

=>MK là phân giác của góc AMB(2)

Từ (1), (2) suy ra K là tâm đường tròn nội tiếp ΔMAB