ngày THI ĐẤU OLM tối nay, ngày 28/04/2023 để so tài với học sinh toàn quốc!!!
Ôn tập kiểm tra học kì 2 hiệu quả, đạt thành tích cao!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
tìm số tự nhiên n>1 sao cho p=(n-2 ) . (n^2+n-5) là số nguyên tố
TH1: n=3
=>P=(3-2)(3^2+3-5)=12-5=7(nhận)
TH2: n=3k+1
P=(3k+1-2)(9k^2+6k+1+3k+1-5)
=(3k-1)(9k^2+9k-3) chia hết cho 3
=>Loại
TH3: P=3k+2
P=(3k+2-2)(9k^2+12k+4+3k+2-5)
=3k(9k^2+15k+1) chia hết cho 3
Tìm số tự nhiên n sao cho p= (n - 2) (n^2 + n-5) là số nguyên tố.
Tìm số tự nhiên n sao cho p=(n-2).(n2+n-5)là số nguyên tố ?
tìm số tự nhiên n sao cho p=(n-2).(n2+n-5) là số nguyên tố
Tìm số tự nhiên n sao cho p = (n-2).(n2 + n-5) là số nguyên tố.
1.Tìm số nguyên n sao cho n^2+3 là số chính phương
2.Tìm số tự nhiên n để n^2+3n+2 là số nguyên tố
3.Tìm số nguyên tố p để p+1 là số chính phương
Tìm số tự nhiên n sao cho p=(n-2).(n^2+n-1) là số nguyên tố.
Học liệu này đang bị hạn chế, chỉ dành cho tài khoản VIP cá nhân, vui lòng nhấn vào đây để nâng cấp tài khoản.
TH1: n=3
=>P=(3-2)(3^2+3-5)=12-5=7(nhận)
TH2: n=3k+1
P=(3k+1-2)(9k^2+6k+1+3k+1-5)
=(3k-1)(9k^2+9k-3) chia hết cho 3
=>Loại
TH3: P=3k+2
P=(3k+2-2)(9k^2+12k+4+3k+2-5)
=3k(9k^2+15k+1) chia hết cho 3
=>Loại