K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 5 2021

a) 5-(x-6)=4.(3-2x)

<=>5-x+6=12-8x

<=>-x+8x=-5-6+12

<=>7x=1

<=>x=1/7

vậy nghiệm của phương trình là 1/7

b) 7-(2x+4)=-(x+4)

<=>7-2x-4=-x-4

<=>-2x+x=-7+4-4

<=>-x=-7

<=>x=7

vậy nghiệm của phương trình là 7

1:

a: =>(|x|+4)(|x|-1)=0

=>|x|-1=0

=>x=1; x=-1

b: =>x^2-4>=0

=>x>=2 hoặc x<=-2

d: =>|2x+5|=2x-5

=>x>=5/2 và (2x+5-2x+5)(2x+5+2x-5)=0

=>x=0(loại)

20 tháng 4 2022

a,\(x\in\left\{5;1,5;\dfrac{-4}{3}\right\}\)

10 tháng 3 2022

a, \(\left(x-5\right)\left(x-5+3\right)=0\Leftrightarrow x=5;x=2\)

b, \(-4x=\dfrac{274}{21}\Leftrightarrow x=-\dfrac{137}{42}\)

c, đk x khác - 2 ; 2 

\(x^2-3x+2-x^2-2x=6-7x\Leftrightarrow-5x+2=6-7x\)

\(\Leftrightarrow2x-4=0\Leftrightarrow x=2\left(ktm\right)\)

Vậy pt vô nghiệm 

28 tháng 4 2022

a, 4x+1=13-2x <-->6x=12 <-->x=2

b, (2x-5)(x-4)=0 <-->x=5/2  hoặc x=4

c,Đề bài -->x(x-2)+6(x+2)=2x+12 -->x^2+2x=0 -->x=0  hoặc x=-2

d,|x-3|=9-2x -->TH1: x-3=9-2x -->x=x=4           TH2:3-x=9-2x -->x=6

 
9 tháng 3 2022

\(\dfrac{2x}{x-1}+\dfrac{4}{x^2+2x-3}=\dfrac{2x-5}{x+3}\)

\(\Leftrightarrow\dfrac{2x}{x-1}+\dfrac{4}{\left(x-1\right)\left(x+3\right)}=\dfrac{2x-5}{x+3}\)

\(ĐK:x\ne1;-3\)

\(\Leftrightarrow\dfrac{2x\left(x+3\right)+4}{\left(x-1\right)\left(x+3\right)}=\dfrac{\left(2x-5\right)\left(x-1\right)}{\left(x-1\right)\left(x+3\right)}\)

\(\Leftrightarrow2x\left(x+3\right)+4=\left(2x-5\right)\left(x-1\right)\)

\(\Leftrightarrow2x^2+6x+4=2x^2-2x-5x+5\)

\(\Leftrightarrow13x=1\)

\(\Leftrightarrow x=\dfrac{1}{13}\left(tm\right)\)

a) ĐKXĐ: x≠-5

Ta có: \(\dfrac{2x-5}{x+5}=4\)

\(\Leftrightarrow2x-5=4\left(x+5\right)\)

\(\Leftrightarrow2x-5=4x+20\)

\(\Leftrightarrow2x-5-4x-20=0\)

\(\Leftrightarrow-2x-25=0\)

\(\Leftrightarrow-2x=25\)

hay \(x=\dfrac{-25}{2}\)(nhận)

Vậy: \(S=\left\{-\dfrac{25}{2}\right\}\)

b) ĐKXĐ: x≠0

Ta có: \(\dfrac{x^2-4}{x}=\dfrac{2x+3}{2}\)

\(\Leftrightarrow2\left(x^2-4\right)=x\left(2x+3\right)\)

\(\Leftrightarrow2x^2-8=2x^2+3x\)

\(\Leftrightarrow2x^2-8-2x^2-3x=0\)

\(\Leftrightarrow-3x-8=0\)

\(\Leftrightarrow-3x=8\)

hay \(x=\dfrac{-8}{3}\)(nhận)

Vậy: \(S=\left\{-\dfrac{8}{3}\right\}\)

c) ĐKXĐ: \(x\notin\left\{\dfrac{1}{2};-5\right\}\)

Ta có: \(\dfrac{2x+3}{2x-1}=\dfrac{x-3}{x+5}\)

\(\Leftrightarrow\left(2x+3\right)\left(x+5\right)=\left(2x-1\right)\left(x-3\right)\)

\(\Leftrightarrow2x^2+10x+3x+15=2x^2-6x-x+3\)

\(\Leftrightarrow2x^2+13x+15=2x^2-7x+3\)

\(\Leftrightarrow2x^2+13x+15-2x^2+7x-3=0\)

\(\Leftrightarrow20x+12=0\)

\(\Leftrightarrow20x=-12\)

hay \(x=-\dfrac{3}{5}\)(nhận)

Vậy: \(S=\left\{-\dfrac{3}{5}\right\}\)

d) ĐKXĐ: \(x\notin\left\{-7;\dfrac{3}{2}\right\}\)

Ta có: \(\dfrac{3x-2}{x+7}=\dfrac{6x+1}{2x-3}\)

\(\Leftrightarrow\left(3x-2\right)\left(2x-3\right)=\left(x+7\right)\left(6x+1\right)\)

\(\Leftrightarrow6x^2-9x-4x+6=6x^2+x+42x+7\)

\(\Leftrightarrow6x^2-13x+6=6x^2+43x+7\)

\(\Leftrightarrow6x^2-13x+6-6x^2-43x-7=0\)

\(\Leftrightarrow-56x-1=0\)

\(\Leftrightarrow-56x=1\)

hay \(x=-\dfrac{1}{56}\)(nhận)

Vậy: \(S=\left\{-\dfrac{1}{56}\right\}\)

12 tháng 5 2021

a) `(2x+3)/(-4) ≥ (4-x)/(-3)`

`<=> (2x+3)/4 ≤ (x-4)/3`

`<=> 3(2x+3) ≤ 4(x-4)`

`<=> 6x+9 ≤ 4x-16`

`<=> 2x ≤ -25`

`<=> x ≤ -25/2`

b) `|x+2| = 2x-10`

TH1: `x+2>=0 <=> x >=-2`

`x+2=2x-10`

`<=>x=12`

TH2: `x<=-2`

`-x-2=2x-10`

`<=>x=8/3 (L)`

Vậy `x=12`.

 

12 tháng 5 2021

a,

⇔ -3(2x + 3) ≥ -4(4 – x )

⇔ -6x – 9 ≥ -16 + 4x

⇔ 16 – 9 ≥ 4x + 6x )

⇔ 7 ≥ 10x

⇔ 0,7 ≥ x hay x ≤ 0,7

Vậy bất phương trình có nghiệm x ≤ 0,7.

b,

ta có :/x+2/=x+2 khi  x+2 >= 0 hay x >= -2
          /x+2/=-( X+2) =-x-2 khi -x-2<0 hay x<-2 
 để giải pt  ta quy về giải hai pt sau :
* x+2 = 2x-10                                               * -x-2=2x-10
<=>-x=-12                                                  <=>-3x = -8 
<=> x =12 ( nhận )                                     <=> x= 8/3 ( nhận )
 vậy pt (1) có TN là S ={12; -8/3}

30 tháng 9 2021

\(a,ĐK:x\ge-\dfrac{3}{2}\\ PT\Leftrightarrow2x+3=25\Leftrightarrow x=11\left(tm\right)\\ b,ĐK:x\ge2\\ PT\Leftrightarrow x^2+2x=2x+4\\ \Leftrightarrow x^2=4\Leftrightarrow\left[{}\begin{matrix}x=2\left(tm\right)\\x=-2\left(ktm\right)\end{matrix}\right.\Leftrightarrow x=2\)

17 tháng 5 2021

b, \(đk:x\ge2\)

Xét x=2 thay vào pt thấy không thỏa mãn => x>2 hay 27x-54>0

 \(x^3-11x+36x-18=4\sqrt[4]{27x-54}\)

\(\Leftrightarrow27x^3-297x^2+972x-486=4\sqrt[4]{\left(27x-54\right).81.81.81}\le189+27x\) (cosi với 4 số dương, dấu = xảy ra khi x=5)

\(\Leftrightarrow x^3-11x^2+35x-25\le0\)

\(\Leftrightarrow\left(x-1\right)\left(x-5\right)^2\le0\)  (*)

\(\left\{{}\begin{matrix}x>2\\\left(x-5\right)^2\ge0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x-1>0\\\left(x-5\right)^2\ge0\end{matrix}\right.\)\(\Rightarrow\left(x-1\right)\left(x-5\right)^2\ge0\) (2*)

Từ (*) và (2*) ,dấu = xra khi x=5 (thỏa mãn)
Vây pt có nghiệm duy nhất x=5

 

 

 

 

 

 

17 tháng 5 2021

c,Có \(6\sqrt[3]{4x^3+x}=16x^4+5>0\)

\(\Leftrightarrow4x^3+x>0\)

Có: \(16x^4+5=6\sqrt[3]{4x^3+x}\le2\left(4x^3+x+2\right)\) (theo cosi với 3 số dương,dấu = xảy ra khi \(x=\dfrac{1}{2}\))

\(\Leftrightarrow16x^4-8x^3-2x+1\le0\)

\(\Leftrightarrow\left(2x-1\right)^2\left(4x^2+2x+1\right)\le0\) (*)
(tương tự câu b) Dấu = xảy ra khi \(x=\dfrac{1}{2}\)(thỏa mãn)
Vậy....

d) Đk: \(x\ge\dfrac{3}{4}\)

Áp dụng bđt cosi:

 \(\sqrt{2x-1}\le\dfrac{2x-1+1}{2}=x\)

 \(\Rightarrow\dfrac{1}{\sqrt{2x-1}}\ge\dfrac{1}{x}\) (*)

\(\sqrt[4]{4x-3}\le\dfrac{4x-3+1+1+1}{4}=x\)

\(\dfrac{\Rightarrow1}{\sqrt[4]{4x-3}}\ge\dfrac{1}{x}\) (2*)

Từ (*) và (2*) \(\Rightarrow\dfrac{1}{\sqrt{2x-1}}+\dfrac{1}{\sqrt[4]{4x-3}}\ge\dfrac{2}{x}\)

Dấu = xảy ra khi x=1 (tm)