mai đức anh

Giới thiệu về bản thân

Chào mừng bạn đến với trang cá nhân của mai đức anh
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
xếp hạng Ngôi sao 1 ngôi sao 2 ngôi sao 1 Sao chiến thắng
0
(Thường được cập nhật sau 1 giờ!)

Từ giả thiết => a≡1(mod3), a=3k+1 (k∈ℕ); b≡2(mod3), b=3q+2 (q∈ℕ)

=> A=4a+9b+a+b=1=1+0+1+2(mod3)hay A≡4(mod3)(1)

Lại có 4a=43k+1=4⋅64k≡4(mod7)

9b=93q+2≡23q+2(mod7)⇒9b≡4⋅8q≡4(mod7)

Từ gt => a≡1(mod7),b≡1(mod7)

Dẫn đến A=4a+9b+a+b≡4+4+1+1(mod7)hay A≡10(mod7)

Từ (1) => A≡10(mod3)mà 3,7 nguyên tố cùng nhau nên A≡10(mod21)

=> A chia 21 dư 10

Từ giả thiết => a≡1(mod3), a=3k+1 (k∈ℕ); b≡2(mod3), b=3q+2 (q∈ℕ)

=> A=4a+9b+a+b=1=1+0+1+2(mod3)hay A≡4(mod3)(1)

Lại có 4a=43k+1=4⋅64k≡4(mod7)

9b=93q+2≡23q+2(mod7)⇒9b≡4⋅8q≡4(mod7)

Từ gt => a≡1(mod7),b≡1(mod7)

Dẫn đến A=4a+9b+a+b≡4+4+1+1(mod7)hay A≡10(mod7)

Từ (1) => A≡10(mod3)mà 3,7 nguyên tố cùng nhau nên A≡10(mod21)

=> A chia 21 dư 10

Từ giả thiết => a≡1(mod3), a=3k+1 (k∈ℕ); b≡2(mod3), b=3q+2 (q∈ℕ)

=> A=4a+9b+a+b=1=1+0+1+2(mod3)hay A≡4(mod3)(1)

Lại có 4a=43k+1=4⋅64k≡4(mod7)

9b=93q+2≡23q+2(mod7)⇒9b≡4⋅8q≡4(mod7)

Từ gt => a≡1(mod7),b≡1(mod7)

Dẫn đến A=4a+9b+a+b≡4+4+1+1(mod7)hay A≡10(mod7)

Từ (1) => A≡10(mod3)mà 3,7 nguyên tố cùng nhau nên A≡10(mod21)

=> A chia 21 dư 10