Cho p(x)=x4+x3+62-40x+m-1985, trong đó m là một tham số
a) tìm m để p(x) chia hết cho (x-2)
b) với m mới vừa tìm được, giải phương trình P(x)=0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Khi \(m=1\) ta có phương trình \(x^2-3x+1=0\)
\(\Delta=3^2-4=5\)
Phương trình có 2 nghiệm phân biệt \(x_1=\dfrac{3-\sqrt{5}}{2};x_2=\dfrac{3+\sqrt{5}}{2}\)
b) Xét phương trình \(x^2-3x+m=0\left(1\right)\)
\(\Delta=9-4m\)
PT có hai nghiệm phân biệt \(\Leftrightarrow\Delta>0\Leftrightarrow9-4m>0\Leftrightarrow m< \dfrac{9}{4}\)
Áp dụng hệ thức Vi-et ta có: \(\left\{{}\begin{matrix}x_1+x_2=3\\x_1x_2=m\end{matrix}\right.\)
Để \(x_1^2+x_2^2=2021\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=2021\)
\(\Leftrightarrow3^2-2m=2021\Leftrightarrow2m=-2012\Leftrightarrow m=-1006\) (TM)
a) Thay x = -2 vào phương trình đã cho ta được:
-8 + 4 – 2m – 4 = 0 ⇔ -2m = 8 ⇔ m = -4
b) Với m = -4, ta có phương trình:
x3 + x2 – 4x – 4 = 0 ⇔ x2(x + 1) – 4(x + 1) = 0
⇔ (x + 1)(x2 – 4) = 0 ⇔ (x + 1)(x – 2)(x + 2) = 0
⇔ x + 1 = 0 hoặc x – 2 = 0 hoặc x + 2 = 0
⇔ x = -1 hoặc x = 2 hoặc x = -2
Tập nghiệm của phương trình: S = {-1; 2; -2}.
\(2x^2+\left(2m-1\right)x+m-1=0\)
Thay m=2 vào phương trình ta có
\(2x^2+\left(4-1\right)x+2-1=0\)
\(\Leftrightarrow2x^2+3x+1=0\)
\(\Delta=3^2-4.2.1\)
\(=9-8\)
\(=1>0\Rightarrow\sqrt{\Delta}=1\)
\(\Rightarrow\)Phương trình có 2 nghiệm phân biệt
\(x_1=\dfrac{-3-1}{4}=-1\) \(x_2=\dfrac{-3+1}{4}=\dfrac{-1}{2}\)
Vậy phương trình có 2 nghiệm là \(x_1=-1;x_2=\dfrac{-1}{2}\)khi m=2
b,\(4x_1^2+2x_1x_2+4x_2^2=1\)
\(\Leftrightarrow4\left(x_1^2+x_2^2\right)+2x_1x_2=1\)
\(\Leftrightarrow4\left(x_1+x_2\right)=1\)
\(\Leftrightarrow4.\left(2m-1\right)^2=1\)
\(\Leftrightarrow2m-1=\dfrac{1}{2}\)
\(\Leftrightarrow2m=\dfrac{3}{2}\)
\(\Leftrightarrow m=\dfrac{3}{4}\)
-Chúc bạn học tốt-
a) Thay x = -2 vào phương trình đã cho ta được:
-8 + 4 – 2m – 4 = 0 ⇔ -2m = 8 ⇔ m = -4
b) Với m = -4, ta có phương trình:
x3 + x2 – 4x – 4 = 0 ⇔ x2(x + 1) – 4(x + 1) = 0
⇔ (x + 1)(x2 – 4) = 0 ⇔ (x + 1)(x – 2)(x + 2) = 0
⇔ x + 1 = 0 hoặc x – 2 = 0 hoặc x + 2 = 0
⇔ x = -1 hoặc x = 2 hoặc x = -2
Tập nghiệm của phương trình: S = {-1; 2; -2}.
hok tốt
a) Thay \(x=-2\)vao phuong trinh da cho ta duoc :
\(-8+4-2m-4=0\Leftrightarrow-2m=8\Leftrightarrow m=-4\)
b) Voi \(m=-4\), ta co phuong trinh :
\(x3+x2-4x-4=0\Leftrightarrow x2\left(x+1\right)-4\left(x+1\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(x2-4\right)=0\Leftrightarrow\left(x+1\right)\left(x-2\right)\left(x+2\right)=0\)
\(\Leftrightarrow x+1=0\)hoac\(x-2=0\)hoac \(x+2=0\)
\(\Leftrightarrow x=-1\)hoac \(x=2\)hoac \(x=-2\)
Tap nghiem cua phuong trinh: \(S=\left(-1;2;-2\right)\)
~ 양 셜 김 ~
\(\Delta'=m^2-\left(m^2-m+2\right)=m-2\)
Pt đã cho có 2 nghiệm khi \(\Delta'\ge0\Leftrightarrow m\ge2\)
b.
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=2m\\x_1x_2=m^2-m+2\end{matrix}\right.\)
\(A=x_1x_2-2\left(x_1+x_2\right)\)
\(A=m^2-m+2-4m\)
\(A=m^2-5m+2=\left(m-\dfrac{5}{2}\right)^2-\dfrac{17}{4}\ge-\dfrac{17}{4}\)
\(A_{min}=-\dfrac{17}{4}\) khi \(m=\dfrac{5}{2}\)
Bài 1:
a) Thay m=3 vào (1), ta được:
\(x^2-4x+3=0\)
a=1; b=-4; c=3
Vì a+b+c=0 nên phương trình có hai nghiệm phân biệt là:
\(x_1=1;x_2=\dfrac{c}{a}=\dfrac{3}{1}=3\)
Bài 2:
a) Thay m=0 vào (2), ta được:
\(x^2-2x+1=0\)
\(\Leftrightarrow\left(x-1\right)^2=0\)
hay x=1
`B4:`
`a)` Thay `x=3` vào ptr:
`3^3-3^2-9.3-9m=0<=>m=-1`
`b)` Thay `m=-1` vào ptr có: `x^3-x^2-9x+9=0`
`<=>x^2(x-1)-9(x-1)=0`
`<=>(x-1)(x-3)(x+3)=0<=>[(x=1),(x=+-3):}`
`B5:`
`a)` Thay `x=-2` vào có: `(-2)^3-(m^2-m+7).(-2)-3(m^2-m-2)=0`
`<=>-8+2m^2-2m+14-3m^2+3m+6=0`
`<=>-m^2+m+12=0<=>(m-4)(m+3)=0<=>[(m=4),(m=-3):}`
`b)`
`@` Với `m=4` có: `x^3-(4^2-4+7)x-3(4^2-4-2)=0`
`<=>x^3-19x-30=0`
`<=>x^3-5x^2+5x^2-25x+6x-30=0`
`<=>(x-5)(x^2+5x+6)=0`
`<=>(x-5)(x+2)(x+3)=0<=>[(x=5),(x=-2),(x=-3):}`
`@` Với `m=-3` có: `x^3-[(-3)^2-(-3)+7]x-3[(-3)^2-(-3)-2]=0`
`<=>x^3-19x-30=0<=>[(x=5),(x=-2),(x=-3):}`
a: P(x) chia hết cho x-2
=>x^4-2x^3+3x^3-6x^2+12x^2-24x-16x+32+m-2017 chia hết cho x-2
=>m-2017=0
=>m=2017
b: P(x)=x^4+x^3+6x^2-40x+32
P(x)=0
=>x^4-2x^3+3x^3-6x^2+12x^2-24x-16x+32=0
=>(x-2)(x^3+3x^2+12x-16)=0
=>x^3+3x^2+12x-16=0 hoặc x-2=0
=>x^3-x^2+4x^2-4x+16x-16=0 hoặc x-2=0
=>x-1=0 hoặc x=2
=>x=1 hoặc x=2