Tính:
S = \(\frac{3}{1.2}\)+ \(\frac{3}{2.3}\)+ \(\frac{3}{3.4}\)+ \(\frac{3}{4.5}\)+.......+ \(\frac{3}{2015.2016}\)
Các bạn cho mình cách giải nha. THANKS
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(S=\frac{3}{1.2}+\frac{3}{2.3}+\frac{3}{3.4}+\frac{3}{4.5}+....+\frac{3}{2015.2016}\)
\(\Rightarrow\frac{1}{3}.S=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+.....+\frac{1}{2015.2016}\)
\(\Rightarrow\frac{1}{3}.S=\left(\frac{1}{1}-\frac{1}{2}\right)+\left(\frac{1}{2}-\frac{1}{3}\right)+\left(\frac{1}{3}-\frac{1}{4}\right)+......+\left(\frac{1}{2015}-\frac{1}{2016}\right)\)
\(\Rightarrow\frac{1}{3}.S=\frac{1}{1}-\frac{1}{2016}\)
\(\Rightarrow\frac{1}{3}.S=\frac{2015}{2016}\)
\(\Rightarrow S=\frac{2015}{672}\)
Vậy: \(\Rightarrow S=\frac{2015}{672}\)
Bạn giải giúp mk câu mk đăng tầm 5 phút nha!
\(A=\frac{1\cdot1}{1\cdot2}\cdot\frac{2\cdot2}{2\cdot3}\cdot\frac{3\cdot3}{3\cdot4}\cdot\frac{4\cdot4}{4\cdot5}=\frac{1\cdot2\cdot3\cdot4}{1\cdot2\cdot3\cdot4}\cdot\frac{1\cdot2\cdot3\cdot4}{2\cdot3\cdot4\cdot5}=\frac{1}{5}\)
\(A=\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+.....+\frac{1}{2016.2017}\)
\(A=\left(\frac{1}{1}-\frac{1}{2}\right)+\left(\frac{1}{2}-\frac{1}{3}\right)+......+\left(\frac{1}{2016}-\frac{1}{2017}\right)\)
\(A=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+....+\frac{1}{2016}-\frac{1}{2017}\)
\(A=\frac{1}{1}-\frac{1}{2017}\)
\(A=\frac{2016}{2017}\)
A=\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+.....+\frac{1}{2016.2017}\)
\(\Rightarrow A=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+......+\frac{1}{2016}-\frac{1}{2017}\)
\(\Rightarrow A=1-\frac{1}{2017}\)
\(\Rightarrow A=\frac{2016}{2017}\)
\(1+\frac{1}{1+2}+\frac{1}{1+2+3}+....+\frac{1}{1+2+3+...+2015}\)
\(=\frac{2}{1.2}+\frac{1}{\frac{\left(1+2\right).2}{2}}+\frac{1}{\frac{\left(1+2+3\right).3}{2}}+.....+\frac{1}{\frac{\left(2015+1\right).2015}{2}}\)
\(=\frac{2}{1.2}+\frac{2}{2.3}+....+\frac{2}{2015.2016}\)
\(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{2016\cdot2017}\)
\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2016}-\frac{1}{2017}\)
\(=1-\frac{1}{2017}=\frac{2016}{2017}\)
a) = 2(1-1/2+1/2-1/3+...+1/19-1/20)
= 2(1-1/20)
= 2.19/20
= 19/10
b) = 7(1/2-1/3+1/3-1/4+...+1/6-1/7)
= 7(1/2 - 1/7)
= 7.5/14
= 5/2
c) = 1/2-1/5+1/5-1/8+...+1/14-1/17
= 1/2 - 1/17
= 15/34
Chúc bạn học tốt nhé
a)2/1.2+2/2.3+....+2/19.20
=2(1/1.2+1/2.3+....+1/19.20)
=2(1-1/2+1/2-1/3+.....-1/20)
=2(1-1/20)
2(19/20)=38/20=19/10
b)7/2.3+7/3.4+7/4.5+7/5.6+7/6.7
7(1/2.3+1/3.4+1/4.5+1/5.6+1/6.7)
7(1/2-1/3+1/3-1/4+.....-1/7)
7(1/2-1/7)
7(7/14-2/14)=7.5/14=35/14=5/2
c)3/2.5+3/5.8+3/8.11+3/11.14+3/14.17
1/2-1/5+1/5-1/8+......+1/14-1/17
1/2-1/17=17/34-2/34=15/34
\(M=\frac{1^2}{1.2}.\frac{2^2}{2.3}.\frac{3^2}{3.4}.\frac{4^2}{4.5}=\frac{1}{2}\cdot\frac{2}{3}\cdot\frac{3}{4}\cdot\frac{4}{5}=\frac{1}{5}\)
\(N=\frac{2}{3.5}+\frac{2}{5.7}+\frac{2}{7.9}+...+\frac{2}{99.101}\)
\(=\frac{1}{3}-\frac{1}{5}+\frac{1}{5}-\frac{1}{7}+\frac{1}{7}-\frac{1}{9}+...+\frac{1}{99}-\frac{1}{101}\)
\(=\frac{1}{3}-\frac{1}{101}=\frac{98}{303}\)
N=1/2x(1/3-1/5+1/5-1/7+....+1/99-1/101)
N=1/2x(1/3-1/101)
N=1/2x98/101
N=49/101
\(\frac{1}{2}.\frac{2}{3}.\frac{3}{4}.\frac{4}{5}=\frac{1}{5}\)
\(\frac{1^2}{1.2}.\frac{2^2}{2.3}.\frac{3^2}{3.4}.\frac{4^2}{4.5}=\frac{1^2.2^2.3^2.4^2}{1.2^2.3^2.4^2.5}=\frac{1}{5}\)
tách tử thành 1.3 ( cho 3 ra ngoài làm nhân tử chung)
=> ở mẫu còn nguyên tắc số thứ 2- số thứ 1 = tử
=> (1/1.2+1/2.3+.......+1/2015.2016 ) .3
= (2-1/1.2+3-2/2.3+......+2016-2015/2015.2016).3
= (2/1.2-1/1.2+3/2.3-2/2.3..........+2016/2015.2016- 2015/2015.2016).3
= ( 1-1/2+1/2-1/3+...........+ 1/2015-1/2016).3
= ( 1-1/2016 ) .3
= 2015/2016 .3
\(S=3.\left(\frac{1}{1}.\frac{1}{2}+\frac{1}{2}.\frac{1}{3}+\frac{1}{3}.\frac{1}{4}+\frac{1}{4}.\frac{1}{5}+...+\frac{1}{2015}.\frac{1}{2016}\right)\)
\(3S=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{2015}-\frac{1}{2016}\)
\(3S=1-\frac{1}{2016}\)
\(3S=\frac{2015}{2016}\)
\(S=\frac{2015}{2016}:3\)
\(S=\frac{2015}{6048}\)