Cho ΔABC đồng dạng ΔDEF theo tỉ số k=\(\dfrac{5}{2}\).Tính chu vi của mỗi tam giác biết tổng chu vi của chúng bằng 1890
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Gọi chu vi tam giác A’B’C’ là P’ và chu vi tam giác ABC là P.
ΔA'B'C' ΔABC theo tỉ số đồng dạng k = 3/5
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
Vậy tỉ số chu vi tam giác A’B’C’ và tam giác ABC là 3/5
⇒ P = 100 ⇒ P’ = 60.
Vậy chu vi tam giác ABC bằng 100dm và chu vi tam giác A’B’C’ là 60dm.
`a) ΔA'B'C' ∼ ΔABC` theo tỉ lệ đồng dạng `k = 2/5`
`=> (A'B')/(AB) = (A'C')/(AC) = (B'C')/(BC) = 2/5`
Theo tính chất dãy tỉ số bằng nhau
`=> (A'B')/(AB) = (A'C')/(AC) = (B'C')/(BC) = (A'B' + A'C' + B'C')/(AB + AC + BC) = 2/5`
`=> (PΔA'B'C')/(PΔABC) = 2/5`
b) Từ a) ta có: `(PΔA'B'C')/(PΔABC) = 2/5`
`=> (PΔA'B'C')/2 = (PΔABC)/5`
Áp dụng tính chất dãy tỉ số bằng nhau:
`=> (PΔA'B'C')/2 = (PΔABC)/5 = (PΔABC - PΔA'B'C')/(5-2) = 30/3 = 10`
`=> PΔA'B'C' = 10 xx 2 = 20 (cm)`
`PΔABC = 10 xx 5 = 50 (cm)`
Ta có : \(\Delta ABC\sim\Delta A'B'C'\)
\(\Rightarrow\dfrac{P_{ABC}}{P_{A'B'C'}}=\dfrac{AB}{A'B'}=\dfrac{2}{7}\)
\(\Rightarrow\dfrac{P_{ABC}}{2}=\dfrac{P_{A'B'C'}}{7}=\dfrac{P_{ABC}+P_{A'B'C'}}{2+7}=\dfrac{180}{9}=20\)
( tính chất dãy tỉ số bằng nhau )
\(\Rightarrow P_{ABC}=2.20=40\left(cm\right)\)
\(\Rightarrow P_{A'B'C'}=20.7=140\left(cm\right)\)
b) Ta có: ΔMNP∼ΔDEF(cmt)
nên \(\dfrac{C_{MNP}}{C_{DEF}}=k\)
hay \(\dfrac{C_{MNP}}{C_{DEF}}=\dfrac{3}{5}\)
a)
\(\text{Δ A'B'C' ∼ Δ ABC}\) theo tỉ số đồng dạng k = \(\dfrac{3}{5}\)
⇒ \(\dfrac{A'B'}{AB}=\dfrac{B'C'}{BC}=\dfrac{A'C'}{AC}=k=\dfrac{3}{5}\) (1)
Áp dúng tính chất của dãy tỉ số bằng nhau, ta có:
\(\dfrac{A'B'}{AB}=\dfrac{B'C'}{BC}=\dfrac{A'C'}{AC}=\dfrac{A'B'+B'C'+A'C'}{AB+BC+AC}=\dfrac{C_{A'B'C'}}{C_{ABC}}\) (2)
Từ (1) và (2) ⇒ \(\dfrac{C_{A'B'C'}}{C_{ABC}}=\dfrac{3}{5}\) (*)
b)
Theo đề ra, ta có:
\(C_{ABC}-C_{A'B'C'}=40\left(dm\right)\)
⇒ \(C_{ABC}=40+C_{A'B'C'}\) (**)
Thay (**) vào (*), ta được:
\(\dfrac{C_{A'B'C'}}{40+C_{A'B'C'}}=\dfrac{3}{5}\)
⇒ \(5C_{A'B'C'}=120+3C_{A'B'C'}\)
⇔ \(2C_{A'B'C'}=120\)
⇒ \(C_{A'B'C'}=60\) (dm)
⇒ \(C_{ABC}=40+60=100\) (dm)
ΔABC đồng dạng vơi ΔDEF theo hệ số tỉ lệ k=5/2
=>\(\dfrac{C_{ABC}}{C_{DEF}}=\dfrac{5}{2}\)
=>\(\dfrac{C_{ABC}}{5}=\dfrac{C_{DEF}}{2}=\dfrac{1890}{7}=270\)
=>\(C_{ABC}=1350\left(cm\right);C_{DEF}=540\)