K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

ΔABC đồng dạng vơi ΔDEF theo hệ số tỉ lệ k=5/2

=>\(\dfrac{C_{ABC}}{C_{DEF}}=\dfrac{5}{2}\)

=>\(\dfrac{C_{ABC}}{5}=\dfrac{C_{DEF}}{2}=\dfrac{1890}{7}=270\)

=>\(C_{ABC}=1350\left(cm\right);C_{DEF}=540\)

11 tháng 6 2017

Giải bài 28 trang 72 SGK Toán 8 Tập 2 | Giải toán lớp 8

a) Gọi chu vi tam giác A’B’C’ là P’ và chu vi tam giác ABC là P.

ΔA'B'C' Giải bài tập Vật lý lớp 12 nâng cao ΔABC theo tỉ số đồng dạng k = 3/5

Giải bài 28 trang 72 SGK Toán 8 Tập 2 | Giải toán lớp 8

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

Giải bài 28 trang 72 SGK Toán 8 Tập 2 | Giải toán lớp 8

Vậy tỉ số chu vi tam giác A’B’C’ và tam giác ABC là 3/5

Giải bài 28 trang 72 SGK Toán 8 Tập 2 | Giải toán lớp 8

⇒ P = 100 ⇒ P’ = 60.

Vậy chu vi tam giác ABC bằng 100dm và chu vi tam giác A’B’C’ là 60dm.

1 tháng 3 2023

`a) ΔA'B'C' ∼ ΔABC` theo tỉ lệ đồng dạng `k = 2/5`

`=> (A'B')/(AB) = (A'C')/(AC) = (B'C')/(BC) = 2/5`

Theo tính chất dãy tỉ số bằng nhau

`=> (A'B')/(AB) = (A'C')/(AC) = (B'C')/(BC) = (A'B' + A'C' + B'C')/(AB + AC + BC) = 2/5`

`=> (PΔA'B'C')/(PΔABC) = 2/5`

b) Từ a) ta có: `(PΔA'B'C')/(PΔABC) = 2/5`

`=> (PΔA'B'C')/2 = (PΔABC)/5`

Áp dụng tính chất dãy tỉ số bằng nhau:

`=>  (PΔA'B'C')/2 = (PΔABC)/5 = (PΔABC - PΔA'B'C')/(5-2) = 30/3 = 10`

`=> PΔA'B'C' = 10 xx 2 = 20 (cm)`

`PΔABC = 10 xx 5 = 50 (cm)`

29 tháng 3 2022

Ta có : \(\Delta ABC\sim\Delta A'B'C'\)

\(\Rightarrow\dfrac{P_{ABC}}{P_{A'B'C'}}=\dfrac{AB}{A'B'}=\dfrac{2}{7}\)

\(\Rightarrow\dfrac{P_{ABC}}{2}=\dfrac{P_{A'B'C'}}{7}=\dfrac{P_{ABC}+P_{A'B'C'}}{2+7}=\dfrac{180}{9}=20\)

( tính chất dãy tỉ số bằng nhau )

\(\Rightarrow P_{ABC}=2.20=40\left(cm\right)\)

\(\Rightarrow P_{A'B'C'}=20.7=140\left(cm\right)\)

b) Ta có: ΔMNP∼ΔDEF(cmt)

nên \(\dfrac{C_{MNP}}{C_{DEF}}=k\)

hay \(\dfrac{C_{MNP}}{C_{DEF}}=\dfrac{3}{5}\)

 

3 tháng 3 2021

a)

\(\text{Δ A'B'C' ∼ Δ ABC}\) theo tỉ số đồng dạng k = \(\dfrac{3}{5}\)

⇒ \(\dfrac{A'B'}{AB}=\dfrac{B'C'}{BC}=\dfrac{A'C'}{AC}=k=\dfrac{3}{5}\)              (1)

Áp dúng tính chất của dãy tỉ số bằng nhau, ta có:

\(\dfrac{A'B'}{AB}=\dfrac{B'C'}{BC}=\dfrac{A'C'}{AC}=\dfrac{A'B'+B'C'+A'C'}{AB+BC+AC}=\dfrac{C_{A'B'C'}}{C_{ABC}}\)                 (2)

Từ (1) và (2) ⇒ \(\dfrac{C_{A'B'C'}}{C_{ABC}}=\dfrac{3}{5}\)           (*)

b)

Theo đề ra, ta có:

\(C_{ABC}-C_{A'B'C'}=40\left(dm\right)\)

⇒ \(C_{ABC}=40+C_{A'B'C'}\)      (**)

Thay (**) vào (*), ta được:

\(\dfrac{C_{A'B'C'}}{40+C_{A'B'C'}}=\dfrac{3}{5}\)

⇒ \(5C_{A'B'C'}=120+3C_{A'B'C'}\)

⇔ \(2C_{A'B'C'}=120\)

⇒ \(C_{A'B'C'}=60\)     (dm)

⇒ \(C_{ABC}=40+60=100\)   (dm)

8 tháng 3 2023

`a)` Tỉ số đồng dạng `k=3/5`

`=>[C_[\triangle ABC]]/[C_[\triangle A'B'C']]=5/3`

`b)` Chu vi `\triangle A'B'C'` là: `C_[\triangle A'B'C]=40. 3/8=15(dm)`

      Chu vi `\triangle ABC` là: `C_[\triangle ABC]=40-15=25(dm)`