Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)
\(\text{Δ A'B'C' ∼ Δ ABC}\) theo tỉ số đồng dạng k = \(\dfrac{3}{5}\)
⇒ \(\dfrac{A'B'}{AB}=\dfrac{B'C'}{BC}=\dfrac{A'C'}{AC}=k=\dfrac{3}{5}\) (1)
Áp dúng tính chất của dãy tỉ số bằng nhau, ta có:
\(\dfrac{A'B'}{AB}=\dfrac{B'C'}{BC}=\dfrac{A'C'}{AC}=\dfrac{A'B'+B'C'+A'C'}{AB+BC+AC}=\dfrac{C_{A'B'C'}}{C_{ABC}}\) (2)
Từ (1) và (2) ⇒ \(\dfrac{C_{A'B'C'}}{C_{ABC}}=\dfrac{3}{5}\) (*)
b)
Theo đề ra, ta có:
\(C_{ABC}-C_{A'B'C'}=40\left(dm\right)\)
⇒ \(C_{ABC}=40+C_{A'B'C'}\) (**)
Thay (**) vào (*), ta được:
\(\dfrac{C_{A'B'C'}}{40+C_{A'B'C'}}=\dfrac{3}{5}\)
⇒ \(5C_{A'B'C'}=120+3C_{A'B'C'}\)
⇔ \(2C_{A'B'C'}=120\)
⇒ \(C_{A'B'C'}=60\) (dm)
⇒ \(C_{ABC}=40+60=100\) (dm)
a) Gọi chu vi tam giác A’B’C’ là P’ và chu vi tam giác ABC là P.
ΔA'B'C' ΔABC theo tỉ số đồng dạng k = 3/5
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
Vậy tỉ số chu vi tam giác A’B’C’ và tam giác ABC là 3/5
⇒ P = 100 ⇒ P’ = 60.
Vậy chu vi tam giác ABC bằng 100dm và chu vi tam giác A’B’C’ là 60dm.
Cho a',b',c' là số đo cạnh của tam giác A'B'C'
a,b,c là số đo cạnh của tam giác ABC
a) Theo đề bài ta có: \(\frac{a'}{a}=\frac{b'}{b}=\frac{c'}{c}=k=\frac{3}{5}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có: \(\frac{a'}{a}=\frac{b'}{b}=\frac{c'}{c}=\frac{a'+b'+c'}{a+b+c}=\frac{P_{A'B'C'}}{P_{ABC}}=k=\frac{3}{5}\)
Vậy tỉ số chu vi hai tam giác đã cho là 3/5
b) Chu vi tam giác ABC là: \(P_{ABC}=40:\left(5-3\right)\cdot5=100\left(dm\right)\)
Chu vi tam giác A'B'C' là: \(P_{A'B'C'}=P_{ABC}-40dm=100dm-40dm=60\left(dm\right)\)
a, Gọi CV tam giác A'B'C' là P', ABC là P
\(\Delta A'B'C'~\Delta ABC\)theo tỉ số đồng dạng \(k=\frac{3}{5}\)
\(\Rightarrow\frac{A'B'}{AB}=\frac{B'C'}{BC}=\frac{C'A'}{CA}=\frac{3}{5}\)
Áp dụng t/c DTSBN , ta có :
\(\frac{3}{5}=\frac{A'B'}{AB}=\frac{B'C'}{BC}=\frac{C'A'}{CA}\)
\(=\frac{A'B'+B'C'+C'A'}{AB+BC+CA}=\frac{P'}{P}\)
Vậy tỉ số chu vi tam giác A'B'C' và ABC là \(\frac{3}{5}\)
`a) ΔA'B'C' ∼ ΔABC` theo tỉ lệ đồng dạng `k = 2/5`
`=> (A'B')/(AB) = (A'C')/(AC) = (B'C')/(BC) = 2/5`
Theo tính chất dãy tỉ số bằng nhau
`=> (A'B')/(AB) = (A'C')/(AC) = (B'C')/(BC) = (A'B' + A'C' + B'C')/(AB + AC + BC) = 2/5`
`=> (PΔA'B'C')/(PΔABC) = 2/5`
b) Từ a) ta có: `(PΔA'B'C')/(PΔABC) = 2/5`
`=> (PΔA'B'C')/2 = (PΔABC)/5`
Áp dụng tính chất dãy tỉ số bằng nhau:
`=> (PΔA'B'C')/2 = (PΔABC)/5 = (PΔABC - PΔA'B'C')/(5-2) = 30/3 = 10`
`=> PΔA'B'C' = 10 xx 2 = 20 (cm)`
`PΔABC = 10 xx 5 = 50 (cm)`
a: Ta có: ΔA'B'C'∼ΔABC
nên A'B'/AB=B'C'/BC=A'C'/AC
=>A'B'/6=B'C'/12=A'C'/8=3/2
=>A'B'=9cm; B'C'=18cm; A'C'=12cm
b: Ta có: ΔA'B'C'∼ΔABC
nên \(\dfrac{C_{A'B'C'}}{C_{ABC}}=\dfrac{3}{2}\)
`a)` Tỉ số đồng dạng `k=3/5`
`=>[C_[\triangle ABC]]/[C_[\triangle A'B'C']]=5/3`
`b)` Chu vi `\triangle A'B'C'` là: `C_[\triangle A'B'C]=40. 3/8=15(dm)`
Chu vi `\triangle ABC` là: `C_[\triangle ABC]=40-15=25(dm)`