Cho tam giác nhọn ABC (AB < AC) kẻ tia phân giác AD .
Về BM, CN vuông góc với AD ( M, N thuộc AD )
a) Chứng minh : ABDM CÓ ACDN.
b) Chứng minh : AB.AN = AC.AM
c) Giả sử AB = 5cm, AC = 8cm, DM = 1cm. Tính độ dài DN.
d) Qua trung điểm I của cạnh BC, kẻ đường thẳng song song với AD cắt cạnh AC tại E và cắt tia BA tại F. Chứng minh: BF=CE.
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Những câu hỏi liên quan
26 tháng 1 2022
a: Ta có: ΔABC cân tại A
mà AD là đường trung tuyến
nên AD là đường cao
b: Xét ΔABM vuông tại M và ΔACN vuông tại N có
\(\widehat{BAM}\) chung
Do đó: ΔABM=ΔACN
Suy ra: AM=AN
Xét ΔBAC có AN/AB=AM/AC
nên MN//BC
21 tháng 2 2022
a: Xét ΔABD và ΔAMD có
AB=AM
\(\widehat{BAD}=\widehat{MAD}\)
AD chung
Do đó: ΔABD=ΔAMD
b: Ta có: ΔABD=ΔAMD
nên \(\widehat{ABD}=\widehat{AMD}\)
c: Xét ΔAID vuông tại I và ΔAKD vuông tại K có
AD chung
\(\widehat{IAD}=\widehat{KAD}\)
Do đó: ΔAID=ΔAKD
Suy ra: AI=AK
=>BI=KM
b: Xét ΔAMB vuông tại M và ΔANC vuông tại N có
góc MAB=góc NAC
=>ΔAMB đồng dạng với ΔANC
=>AM/AN=AB/AC
=>AM*AC=AB*AN
c: DB/DC=AB/AC=5/8
Xét ΔDMB vuông tại M và ΔDNC vuông tại N có
góc MDB=góc NDC
=>ΔDMB đồng dạng với ΔDNC
=>DM/DN=DB/DC=5/8
=>1/DN=5/8
=>DN=1,6cm