cho tam giác abc.Trên nửa mặt phẳng bờ ac không chứu điểm B,lần lượt vẽ các đường thẳng qua A song song BC và đi qua C song song AB.Chúng lần lượt cắt nhau tại D.Gọi M,N,P lần lượt là các trung điểm của AD,CD,BC.Gọi giao điểm BD với AP và BD với CM lần lượt là E,F.CMR:
a,A,F,N thẳng hàng
b,BE=EF=FC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: MN // AB (gt). \(\Rightarrow\left\{{}\begin{matrix}\widehat{MAB}=\widehat{ABC}\\\widehat{NAC}=\widehat{ACB}\end{matrix}\right.\) (so le trong).
Mà \(\widehat{ABC}=\widehat{ACB}\) (Tam giác ABC cân).
\(\Rightarrow\widehat{MAB}=\widehat{NAC.}\)
Xét tam giác AMB và tam giác ANC có:
+ AM = AN (A là trung điểm của MN).
+ AB = AC (gt).
+ \(\widehat{MAB}=\widehat{NAC}\left(cmt\right).\)
\(\Rightarrow\) Tam giác AMB = Tam giác ANC (c - g - c).
Xét tứ giác MNCB có: \(\text{MN // CB}\) (gt).
\(\Rightarrow\) Tứ giác MNCB là hình thang.
Mà \(\widehat{M}=\widehat{N}\) (Tam giác AMB = Tam giác ANC).
\(\Rightarrow\) Tứ giác MNCB là hình thang cân.
a) Do AD // BC (gt) => góc DAC = góc ACB (so le trong)
AB // CD (gt) => góc BAC = góc ACD (so le trong)
Xét t/giác ABC và t/giác CDA
có góc ACB = góc DAC (cmt)
AC : chung
góc BAC = góc ACD (cmt)
=> t/giác ABC = t/giác CDA (g.c.g)
b) Ta có : t/giác ABC = t/giác CDA (cmt)
=> AB = CD (hai cạnh tương ứng)
Do AB // CD (gt) => góc ABD = góc BDC (so le trong)
Xét t/giác AMB và t/giác CMD
có góc BAM = góc MCD (cmt)
AB = CD (cmt)
góc ABM = góc BDM (cmt)
=> t/giác AMB = t/giác CMD (g.c.g)
=> AM = MC (hai cạnh tương ứng)
=> M là trung điểm của AC
c) Xét t/giác AMI và t/giác CMK
có góc DAC = góc ACK (cmt)
AM = CM (cmt)
góc IMA = góc CMK (đối đỉnh)
=> t/giác AMI = t/giác CMK (g.c.g)
=> MI = MK (hai cạnh tương ứng)
=> M là trung điểm của IK
Kuroba Kaito, mình đã biết I, M, K có thẳng hàng đâu. mới chứng minh được MI=Mk nên chưa thể nói M là trung điểm của IK được
Dễ thấy H là trực tâm của tam giác ABC.
a) Bỏ qua
b) Gọi T là trung điểm của HC.
Ta có NT là đường trung bình của tam giác AHC nên NT // AH. Suy ra NT // OM.
TM là đường trung bình của tam giác BHC nên MT // BH. Suy ra MT // ON.
Từ đó tứ giác NTMO là hình bình hành nên OM = NT = \(\dfrac{AH}{2}\).
Xét \(\Delta AHG\) và \(\Delta MOG\) có: \(\widehat{HAG}=\widehat{OMG}\) (so le trong, AH // OM) và \(\dfrac{AH}{MO}=\dfrac{AG}{MG}\left(=2\right)\).
Do đó \(\Delta AHG\sim\Delta MOG\left(c.g.c\right)\).
c) Do \(\Delta AHG\sim\Delta MOG\left(c.g.c\right)\) nên \(\widehat{AGH}=\widehat{MGO}\), do đó H, G, O thẳng hàng.
Cho tam giác ABC cân tại A. Trên đường thẳng đi qua đỉnh A song song với BC lấy hai điểm M và N sao cho A là trung điểm của MN (M và B cùng thuộc nửa mặt phẳng bờ là AC). Gọi H, I, K lần lượt là trung điểm MB, BC, CN. a) Chứng minh tứ giác MNCB là hình thang cân. b) Tứ giác AHIK là hình gì? Vì sao - Toán học Lớp 8 - Bài tập Toán học Lớp 8 - Giải bài tập Toán học Lớp 8 | Lazi.vn - Cộng đồng Tri thức & Giáo dục
(Hình minh họa)
a)
Gọi O là giao điểm của AC và BD
Xét \(\Delta ABD\) và \(\Delta CDB\):
BD chung
\(\widehat{ABD}=\widehat{CDB}\)
\(\widehat{ADB}=\widehat{CBD}\)
\(\Rightarrow\Delta ABD=\Delta CBD\left(g.c.g\right)\)
\(\Rightarrow AB=CD\)
Xét \(\Delta AOB\) và \(\Delta COD\):
AB = CD
\(\widehat{OBA}=\widehat{ODC}\)
\(\widehat{OAB}=\widehat{OCD}\)
\(\Rightarrow\Delta AOB=\Delta COD\left(g.c.g\right)\)
\(\Rightarrow OA=OC;OB=OD\)
\(\Rightarrow O\) là trung điểm AC và BD
Xét \(\Delta ACD\):
MC và DO là hai đường trung tuyến của tam giác và giao nhau ở F
\(\Rightarrow F\) là trọng tâm \(\Delta ADC\)
Mà AN là đường trung tuyến \(\Delta ADC\)
\(\Rightarrow A,F,N\) thẳng hàng
b)
Vì P là trọng tâm \(\Delta ADC\)
\(\Rightarrow DF=\dfrac{2}{3}DO;OF=\dfrac{1}{3}DO\)
Vì O là giao điểm của hai đường trung tuyến BO và AP của \(\Delta ABC\)
\(\Rightarrow O\) là trọng tâm \(\Delta ABC\)
\(\Rightarrow BE=\dfrac{2}{3}BO;EO=\dfrac{1}{3}BO\)
Mà O là trung điểm BD
\(\Rightarrow BO=DO\)
\(\Rightarrow BE=DF=\dfrac{2}{3}BO=\dfrac{2}{3}DO\)
\(\Rightarrow FO=EO=\dfrac{1}{3}BO=\dfrac{1}{3}DO\Rightarrow EO+FO=FE=\dfrac{2}{3}BO=\dfrac{2}{3}DO\)
\(\Rightarrow BE=FE=FD\).