Tìm x\(\in Z\) biết(\(\left(x^2-15\right)\times\left(x^2-8\right)<0\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta thấy : \(x^3+5\) < \(x^3+10\) < \(x^3+15\) < \(x^3+30\)
Nếu có 1 thừa số âm : \(x^3+5
Để (x3 + 5) . (x3 + 10) . (x3 + 15) x (x3 + 30) < 0
Mà x3 + 5 < x3 + 10 < x3 + 15 < x3 + 30 nên
<=> x3 + 5 < 0 => x3 < -5 => x \(\le\) -2
hoặc x3 + 5 < 0 và x3 + 10 < 0 và x3 + 15 < 0
=> x3 + 15 < 0 => x3 < -15 => x \(\le-3\)
Vậy \(x\le2\) với \(x\in Z\)
Lời giải:
PT \(\Leftrightarrow \frac{(x+4)-(x+2)}{(x+2)(x+4)}+\frac{(x+8)-(x+4)}{(x+4)(x+8)}+\frac{(x+14)-(x+8)}{(x+8)(x+14)}=\frac{x}{(x+2)(x+14)}\)
\(\Leftrightarrow \frac{1}{x+2}-\frac{1}{x+4}+\frac{1}{x+4}-\frac{1}{x+8}+\frac{1}{x+8}-\frac{1}{x+14}=\frac{x}{(x+2)(x+14)}\)
\(\Leftrightarrow \frac{1}{x+2}-\frac{1}{x+14}=\frac{x}{(x+2)(x+14)}\)
\(\Leftrightarrow \frac{12}{(x+2)(x+14)}=\frac{x}{(x+2)(x+14)}\)
\(\Rightarrow x=12\) (thỏa mãn)
Vậy......
a) \(\left(x-1\right)\left(2x-4\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x-1=0\Rightarrow x=1\\2x-4=0\Rightarrow x=2\end{matrix}\right.\)
b) \(\left(x^2+5\right)\left(x-5\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x^2+5=0\Rightarrow x=-\sqrt{5}\\x-5=0\Rightarrow x=5\end{matrix}\right.\)
mà \(x\in Z\Rightarrow x=5\)
c) \(\left(x^2+5\right)\left(x^2-2\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x^2+5=0\Rightarrow x=-\sqrt{5}\\x^2-2=0\Rightarrow x=\sqrt{2}\end{matrix}\right.\)
mà \(x\in Z\Rightarrow x\in\varnothing\)
\(y\left(y-5\right)\left(y-10\right)\left(y-15\right)< 0\)y(y-5)(y-10)(y-15)<0
\(\left(y^2-15y\right)\left(y^2-15y+50\right)< 0\)(y^2-15y)(y^2-15y+50)
\(\left(z\right)\left(z+50\right)< 0\)
\(-50< z< 0\Rightarrow\hept{\begin{cases}y^2-15y< 0\Rightarrow0< y< 15\\y^2-15>-50dungvoi.\forall y\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}y>0\\y< 15\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x^2-5>0\Leftrightarrow\orbr{\begin{cases}x>5\\x< -5\end{cases}}\\x^2-5< 15\Rightarrow-10< x< 10\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x^2-5>0\Rightarrow x< -5hoac.x>5\\x^2-5< 10\Rightarrow-10< x< 10\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}-10< x< -5\\5< x< 10\end{cases}}\)
Để đẳng thức trên xảy ra thì phải có ít nhất 1 số âm hoặc 3 số âm
TH1:có 1 số âm
=>x2-20 < 0 <x2-15
=>15 < x2 <20
=> x2=16
=> x = +-4
TH2:có 3 số âm
=> x2-10 < 0 <x2-5
=> 5 < x2 <10
=> x2 =9
=>x=+-3. Vậy x=3;x=-3;x=4hoặc x=-4
Chắc lun đó bạn ạ.Chúc bạn học giỏi nha!